(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
double(0) → 0
double(s(x)) → s(s(double(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(s(x), y) → s(+(x, y))
double(x) → +(x, x)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DOUBLE(s(x)) → DOUBLE(x)
+1(x, s(y)) → +1(x, y)
+1(s(x), y) → +1(x, y)
DOUBLE(x) → +1(x, x)
The TRS R consists of the following rules:
double(0) → 0
double(s(x)) → s(s(double(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(s(x), y) → s(+(x, y))
double(x) → +(x, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
+1(s(x), y) → +1(x, y)
+1(x, s(y)) → +1(x, y)
The TRS R consists of the following rules:
double(0) → 0
double(s(x)) → s(s(double(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(s(x), y) → s(+(x, y))
double(x) → +(x, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
+1(x, s(y)) → +1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
+1(
x1,
x2) =
+1(
x2)
s(
x1) =
s(
x1)
double(
x1) =
double(
x1)
0 =
0
+(
x1,
x2) =
+(
x1,
x2)
Recursive Path Order [RPO].
Precedence:
+^11 > s1
double1 > +2 > s1
0 > s1
The following usable rules [FROCOS05] were oriented:
double(0) → 0
double(s(x)) → s(s(double(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(s(x), y) → s(+(x, y))
double(x) → +(x, x)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
+1(s(x), y) → +1(x, y)
The TRS R consists of the following rules:
double(0) → 0
double(s(x)) → s(s(double(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(s(x), y) → s(+(x, y))
double(x) → +(x, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
+1(s(x), y) → +1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
+1(
x1,
x2) =
+1(
x1)
s(
x1) =
s(
x1)
double(
x1) =
double(
x1)
0 =
0
+(
x1,
x2) =
+(
x1,
x2)
Recursive Path Order [RPO].
Precedence:
double1 > +2 > s1 > +^11
The following usable rules [FROCOS05] were oriented:
double(0) → 0
double(s(x)) → s(s(double(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(s(x), y) → s(+(x, y))
double(x) → +(x, x)
(9) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
double(0) → 0
double(s(x)) → s(s(double(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(s(x), y) → s(+(x, y))
double(x) → +(x, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(11) TRUE
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DOUBLE(s(x)) → DOUBLE(x)
The TRS R consists of the following rules:
double(0) → 0
double(s(x)) → s(s(double(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(s(x), y) → s(+(x, y))
double(x) → +(x, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
DOUBLE(s(x)) → DOUBLE(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
DOUBLE(
x1) =
x1
s(
x1) =
s(
x1)
double(
x1) =
double(
x1)
0 =
0
+(
x1,
x2) =
+(
x1,
x2)
Recursive Path Order [RPO].
Precedence:
double1 > +2 > s1
The following usable rules [FROCOS05] were oriented:
double(0) → 0
double(s(x)) → s(s(double(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(s(x), y) → s(+(x, y))
double(x) → +(x, x)
(14) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
double(0) → 0
double(s(x)) → s(s(double(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(s(x), y) → s(+(x, y))
double(x) → +(x, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(16) TRUE