(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))

The set Q consists of the following terms:

+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(s(x), y) → +1(x, y)
+1(p(x), y) → +1(x, y)
MINUS(s(x)) → MINUS(x)
MINUS(p(x)) → MINUS(x)
*1(s(x), y) → +1(*(x, y), y)
*1(s(x), y) → *1(x, y)
*1(p(x), y) → +1(*(x, y), minus(y))
*1(p(x), y) → *1(x, y)
*1(p(x), y) → MINUS(y)

The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))

The set Q consists of the following terms:

+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(p(x)) → MINUS(x)
MINUS(s(x)) → MINUS(x)

The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))

The set Q consists of the following terms:

+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(p(x)) → MINUS(x)
MINUS(s(x)) → MINUS(x)

R is empty.
The set Q consists of the following terms:

+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(10) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(p(x)) → MINUS(x)
MINUS(s(x)) → MINUS(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MINUS(p(x)) → MINUS(x)
    The graph contains the following edges 1 > 1

  • MINUS(s(x)) → MINUS(x)
    The graph contains the following edges 1 > 1

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(p(x), y) → +1(x, y)
+1(s(x), y) → +1(x, y)

The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))

The set Q consists of the following terms:

+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(15) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(p(x), y) → +1(x, y)
+1(s(x), y) → +1(x, y)

R is empty.
The set Q consists of the following terms:

+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(17) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(p(x), y) → +1(x, y)
+1(s(x), y) → +1(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • +1(p(x), y) → +1(x, y)
    The graph contains the following edges 1 > 1, 2 >= 2

  • +1(s(x), y) → +1(x, y)
    The graph contains the following edges 1 > 1, 2 >= 2

(20) TRUE

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(p(x), y) → *1(x, y)
*1(s(x), y) → *1(x, y)

The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))

The set Q consists of the following terms:

+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(22) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(p(x), y) → *1(x, y)
*1(s(x), y) → *1(x, y)

R is empty.
The set Q consists of the following terms:

+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(24) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(p(x), y) → *1(x, y)
*1(s(x), y) → *1(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • *1(p(x), y) → *1(x, y)
    The graph contains the following edges 1 > 1, 2 >= 2

  • *1(s(x), y) → *1(x, y)
    The graph contains the following edges 1 > 1, 2 >= 2

(27) TRUE