(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
minus(0) → 0
+(x, 0) → x
+(0, y) → y
+(minus(1), 1) → 0
minus(minus(x)) → x
+(x, minus(y)) → minus(+(minus(x), y))
+(x, +(y, z)) → +(+(x, y), z)
+(minus(+(x, 1)), 1) → minus(x)
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Precedence:
+2 > minus1
+2 > 0
1 > minus1
1 > 0
Status:
minus1: [1]
0: multiset
+2: [2,1]
1: multiset
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
minus(0) → 0
+(x, 0) → x
+(0, y) → y
+(minus(1), 1) → 0
minus(minus(x)) → x
+(x, minus(y)) → minus(+(minus(x), y))
+(x, +(y, z)) → +(+(x, y), z)
+(minus(+(x, 1)), 1) → minus(x)
(2) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(3) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(4) TRUE