(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(s(x), y) → +(x, s(y))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(s(x), y) → +1(x, y)
+1(s(x), y) → +1(x, s(y))

The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(s(x), y) → +(x, s(y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


+1(s(x), y) → +1(x, y)
+1(s(x), y) → +1(x, s(y))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
+1(x1, x2)  =  +1(x1)
s(x1)  =  s(x1)
+(x1, x2)  =  +(x1, x2)
0  =  0

Lexicographic path order with status [LPO].
Precedence:
+2 > s1 > +^11
0 > +^11

Status:
+^11: [1]
s1: [1]
+2: [1,2]
0: []

The following usable rules [FROCOS05] were oriented:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(s(x), y) → +(x, s(y))

(4) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(0, y) → y
+(s(x), y) → s(+(x, y))
+(s(x), y) → +(x, s(y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(6) TRUE