(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(s(x), y) → +(x, s(y))
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
+2 > s1
0 > s1
Status:
s1: [1]
0: multiset
+2: [1,2]
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(s(x), y) → +(x, s(y))
(2) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(3) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(4) TRUE