(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))
f(a, y) → a
f(b, y) → b
f(+(x, y), z) → +(f(x, z), f(y, z))

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Lexicographic path order with status [LPO].
Precedence:
a > +2 > b
f2 > +2 > b

Status:
+2: [1,2]
a: []
b: []
f2: [1,2]
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))
f(a, y) → a
f(b, y) → b
f(+(x, y), z) → +(f(x, z), f(y, z))


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) TRUE