(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))
f(a, y) → a
f(b, y) → b
f(+(x, y), z) → +(f(x, z), f(y, z))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(a, b) → +1(b, a)
+1(a, +(b, z)) → +1(b, +(a, z))
+1(a, +(b, z)) → +1(a, z)
+1(+(x, y), z) → +1(x, +(y, z))
+1(+(x, y), z) → +1(y, z)
F(+(x, y), z) → +1(f(x, z), f(y, z))
F(+(x, y), z) → F(x, z)
F(+(x, y), z) → F(y, z)

The TRS R consists of the following rules:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))
f(a, y) → a
f(b, y) → b
f(+(x, y), z) → +(f(x, z), f(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(a, +(b, z)) → +1(a, z)

The TRS R consists of the following rules:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))
f(a, y) → a
f(b, y) → b
f(+(x, y), z) → +(f(x, z), f(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

a1(b(z)) → a1(z)

The a-transformed usable rules are
none


The following pairs can be oriented strictly and are deleted.


+1(a, +(b, z)) → +1(a, z)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
b1 > a11

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))
f(a, y) → a
f(b, y) → b
f(+(x, y), z) → +(f(x, z), f(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(+(x, y), z) → +1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))

The TRS R consists of the following rules:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))
f(a, y) → a
f(b, y) → b
f(+(x, y), z) → +(f(x, z), f(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


+1(+(x, y), z) → +1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
+1(x1, x2)  =  +1(x1)
+(x1, x2)  =  +(x1, x2)
a  =  a
b  =  b

Recursive Path Order [RPO].
Precedence:
a > +2 > +^11
b > +2 > +^11

The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))
f(a, y) → a
f(b, y) → b
f(+(x, y), z) → +(f(x, z), f(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(+(x, y), z) → F(y, z)
F(+(x, y), z) → F(x, z)

The TRS R consists of the following rules:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))
f(a, y) → a
f(b, y) → b
f(+(x, y), z) → +(f(x, z), f(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(+(x, y), z) → F(y, z)
F(+(x, y), z) → F(x, z)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
+2 > F2

The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(a, b) → +(b, a)
+(a, +(b, z)) → +(b, +(a, z))
+(+(x, y), z) → +(x, +(y, z))
f(a, y) → a
f(b, y) → b
f(+(x, y), z) → +(f(x, z), f(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE