(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(+(x, 0)) → f(x)
+(x, +(y, z)) → +(+(x, y), z)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(+(x, 0)) → F(x)
+1(x, +(y, z)) → +1(+(x, y), z)
+1(x, +(y, z)) → +1(x, y)
The TRS R consists of the following rules:
f(+(x, 0)) → f(x)
+(x, +(y, z)) → +(+(x, y), z)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
+1(x, +(y, z)) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)
The TRS R consists of the following rules:
f(+(x, 0)) → f(x)
+(x, +(y, z)) → +(+(x, y), z)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(+(x, 0)) → F(x)
The TRS R consists of the following rules:
f(+(x, 0)) → f(x)
+(x, +(y, z)) → +(+(x, y), z)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.