(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(a, a) → f(a, b)
f(a, b) → f(s(a), c)
f(s(X), c) → f(X, c)
f(c, c) → f(a, a)

Q is empty.

(1) AAECC Innermost (EQUIVALENT transformation)

We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is none

The TRS R 2 is

f(a, a) → f(a, b)
f(a, b) → f(s(a), c)
f(s(X), c) → f(X, c)
f(c, c) → f(a, a)

The signature Sigma is {f}

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(a, a) → f(a, b)
f(a, b) → f(s(a), c)
f(s(X), c) → f(X, c)
f(c, c) → f(a, a)

The set Q consists of the following terms:

f(a, a)
f(a, b)
f(s(x0), c)
f(c, c)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(a, a) → F(a, b)
F(a, b) → F(s(a), c)
F(s(X), c) → F(X, c)
F(c, c) → F(a, a)

The TRS R consists of the following rules:

f(a, a) → f(a, b)
f(a, b) → f(s(a), c)
f(s(X), c) → f(X, c)
f(c, c) → f(a, a)

The set Q consists of the following terms:

f(a, a)
f(a, b)
f(s(x0), c)
f(c, c)

We have to consider all minimal (P,Q,R)-chains.

(5) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(a, a) → F(a, b)
F(a, b) → F(s(a), c)
F(s(X), c) → F(X, c)
F(c, c) → F(a, a)

R is empty.
The set Q consists of the following terms:

f(a, a)
f(a, b)
f(s(x0), c)
f(c, c)

We have to consider all minimal (P,Q,R)-chains.

(7) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

f(a, a)
f(a, b)
f(s(x0), c)
f(c, c)

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(a, a) → F(a, b)
F(a, b) → F(s(a), c)
F(s(X), c) → F(X, c)
F(c, c) → F(a, a)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(c, c) → F(a, a)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(F(x1, x2)) =
/0\
\1/
+
/11\
\11/
·x1 +
/00\
\01/
·x2

POL(a) =
/0\
\1/

POL(b) =
/0\
\1/

POL(s(x1)) =
/0\
\0/
+
/11\
\00/
·x1

POL(c) =
/1\
\1/

The following usable rules [FROCOS05] were oriented: none

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(a, a) → F(a, b)
F(a, b) → F(s(a), c)
F(s(X), c) → F(X, c)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(X), c) → F(X, c)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • F(s(X), c) → F(X, c)
    The graph contains the following edges 1 > 1, 2 >= 2

(14) TRUE