(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

dx(X) → one
dx(a) → zero
dx(plus(ALPHA, BETA)) → plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) → plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) → minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) → neg(dx(ALPHA))
dx(div(ALPHA, BETA)) → minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) → div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) → plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DX(plus(ALPHA, BETA)) → DX(ALPHA)
DX(plus(ALPHA, BETA)) → DX(BETA)
DX(times(ALPHA, BETA)) → DX(ALPHA)
DX(times(ALPHA, BETA)) → DX(BETA)
DX(minus(ALPHA, BETA)) → DX(ALPHA)
DX(minus(ALPHA, BETA)) → DX(BETA)
DX(neg(ALPHA)) → DX(ALPHA)
DX(div(ALPHA, BETA)) → DX(ALPHA)
DX(div(ALPHA, BETA)) → DX(BETA)
DX(ln(ALPHA)) → DX(ALPHA)
DX(exp(ALPHA, BETA)) → DX(ALPHA)
DX(exp(ALPHA, BETA)) → DX(BETA)

The TRS R consists of the following rules:

dx(X) → one
dx(a) → zero
dx(plus(ALPHA, BETA)) → plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) → plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) → minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) → neg(dx(ALPHA))
dx(div(ALPHA, BETA)) → minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) → div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) → plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


DX(plus(ALPHA, BETA)) → DX(ALPHA)
DX(plus(ALPHA, BETA)) → DX(BETA)
DX(times(ALPHA, BETA)) → DX(ALPHA)
DX(times(ALPHA, BETA)) → DX(BETA)
DX(minus(ALPHA, BETA)) → DX(ALPHA)
DX(minus(ALPHA, BETA)) → DX(BETA)
DX(div(ALPHA, BETA)) → DX(ALPHA)
DX(div(ALPHA, BETA)) → DX(BETA)
DX(ln(ALPHA)) → DX(ALPHA)
DX(exp(ALPHA, BETA)) → DX(ALPHA)
DX(exp(ALPHA, BETA)) → DX(BETA)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
DX(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
minus(x1, x2)  =  minus(x1, x2)
neg(x1)  =  x1
div(x1, x2)  =  div(x1, x2)
ln(x1)  =  ln(x1)
exp(x1, x2)  =  exp(x1, x2)
dx(x1)  =  dx(x1)
one  =  one
a  =  a
zero  =  zero
two  =  two

Lexicographic path order with status [LPO].
Quasi-Precedence:
dx1 > plus2
dx1 > times2
dx1 > minus2
dx1 > div2
dx1 > ln1
dx1 > exp2
dx1 > one
dx1 > zero
dx1 > two

Status:
trivial


The following usable rules [FROCOS05] were oriented:

dx(X) → one
dx(a) → zero
dx(plus(ALPHA, BETA)) → plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) → plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) → minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) → neg(dx(ALPHA))
dx(div(ALPHA, BETA)) → minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) → div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) → plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DX(neg(ALPHA)) → DX(ALPHA)

The TRS R consists of the following rules:

dx(X) → one
dx(a) → zero
dx(plus(ALPHA, BETA)) → plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) → plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) → minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) → neg(dx(ALPHA))
dx(div(ALPHA, BETA)) → minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) → div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) → plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


DX(neg(ALPHA)) → DX(ALPHA)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
DX(x1)  =  x1
neg(x1)  =  neg(x1)
dx(x1)  =  x1
one  =  one
a  =  a
zero  =  zero
plus(x1, x2)  =  plus
times(x1, x2)  =  times
minus(x1, x2)  =  minus
div(x1, x2)  =  div
exp(x1, x2)  =  exp
two  =  two
ln(x1)  =  ln

Lexicographic path order with status [LPO].
Quasi-Precedence:
neg1 > one
a > zero > one
times > plus > one
ln > div > minus > one
exp > plus > one

Status:
trivial


The following usable rules [FROCOS05] were oriented:

dx(X) → one
dx(a) → zero
dx(plus(ALPHA, BETA)) → plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) → plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) → minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) → neg(dx(ALPHA))
dx(div(ALPHA, BETA)) → minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) → div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) → plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

(6) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

dx(X) → one
dx(a) → zero
dx(plus(ALPHA, BETA)) → plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) → plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) → minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) → neg(dx(ALPHA))
dx(div(ALPHA, BETA)) → minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) → div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) → plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(8) TRUE