(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a → g(c)
g(a) → b
f(g(X), b) → f(a, X)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A → G(c)
F(g(X), b) → F(a, X)
F(g(X), b) → A
The TRS R consists of the following rules:
a → g(c)
g(a) → b
f(g(X), b) → f(a, X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(g(X), b) → F(a, X)
The TRS R consists of the following rules:
a → g(c)
g(a) → b
f(g(X), b) → f(a, X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(g(X), b) → F(a, X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[b, a] > F2 > [g1, f2]
[b, a] > c > [g1, f2]
Status:
F2: multiset
g1: multiset
b: multiset
a: multiset
c: multiset
f2: multiset
The following usable rules [FROCOS05] were oriented:
a → g(c)
g(a) → b
f(g(X), b) → f(a, X)
(6) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
a → g(c)
g(a) → b
f(g(X), b) → f(a, X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(8) TRUE