0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
↳17 QDP
↳18 QDPOrderProof (⇔)
↳19 QDP
↳20 PisEmptyProof (⇔)
↳21 TRUE
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))
min(x0, 0)
min(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
log(s(0))
log(s(s(x0)))
MIN(s(X), s(Y)) → MIN(X, Y)
QUOT(s(X), s(Y)) → QUOT(min(X, Y), s(Y))
QUOT(s(X), s(Y)) → MIN(X, Y)
LOG(s(s(X))) → LOG(s(quot(X, s(s(0)))))
LOG(s(s(X))) → QUOT(X, s(s(0)))
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))
min(x0, 0)
min(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
log(s(0))
log(s(s(x0)))
MIN(s(X), s(Y)) → MIN(X, Y)
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))
min(x0, 0)
min(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
log(s(0))
log(s(s(x0)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MIN(s(X), s(Y)) → MIN(X, Y)
s1 > MIN1
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))
min(x0, 0)
min(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
log(s(0))
log(s(s(x0)))
QUOT(s(X), s(Y)) → QUOT(min(X, Y), s(Y))
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))
min(x0, 0)
min(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
log(s(0))
log(s(s(x0)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT(s(X), s(Y)) → QUOT(min(X, Y), s(Y))
QUOT2 > s1 > min1
0 > min1
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))
min(x0, 0)
min(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
log(s(0))
log(s(s(x0)))
LOG(s(s(X))) → LOG(s(quot(X, s(s(0)))))
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))
min(x0, 0)
min(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
log(s(0))
log(s(s(x0)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LOG(s(s(X))) → LOG(s(quot(X, s(s(0)))))
LOG1 > 0 > s1
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))
min(x0, 0)
min(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
log(s(0))
log(s(s(x0)))