(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
minus(X, 0) → X
minus(s(X), s(Y)) → p(minus(X, Y))
p(s(X)) → X
div(0, s(Y)) → 0
div(s(X), s(Y)) → s(div(minus(X, Y), s(Y)))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
minus(X, 0) → X
minus(s(X), s(Y)) → p(minus(X, Y))
p(s(X)) → X
div(0, s(Y)) → 0
div(s(X), s(Y)) → s(div(minus(X, Y), s(Y)))
The set Q consists of the following terms:
minus(x0, 0)
minus(s(x0), s(x1))
p(s(x0))
div(0, s(x0))
div(s(x0), s(x1))
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s(X), s(Y)) → P(minus(X, Y))
MINUS(s(X), s(Y)) → MINUS(X, Y)
DIV(s(X), s(Y)) → DIV(minus(X, Y), s(Y))
DIV(s(X), s(Y)) → MINUS(X, Y)
The TRS R consists of the following rules:
minus(X, 0) → X
minus(s(X), s(Y)) → p(minus(X, Y))
p(s(X)) → X
div(0, s(Y)) → 0
div(s(X), s(Y)) → s(div(minus(X, Y), s(Y)))
The set Q consists of the following terms:
minus(x0, 0)
minus(s(x0), s(x1))
p(s(x0))
div(0, s(x0))
div(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s(X), s(Y)) → MINUS(X, Y)
The TRS R consists of the following rules:
minus(X, 0) → X
minus(s(X), s(Y)) → p(minus(X, Y))
p(s(X)) → X
div(0, s(Y)) → 0
div(s(X), s(Y)) → s(div(minus(X, Y), s(Y)))
The set Q consists of the following terms:
minus(x0, 0)
minus(s(x0), s(x1))
p(s(x0))
div(0, s(x0))
div(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(8) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
MINUS(s(X), s(Y)) → MINUS(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MINUS(
x1,
x2) =
MINUS(
x2)
s(
x1) =
s(
x1)
Lexicographic Path Order [LPO].
Precedence:
s1 > MINUS1
The following usable rules [FROCOS05] were oriented:
none
(9) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
minus(X, 0) → X
minus(s(X), s(Y)) → p(minus(X, Y))
p(s(X)) → X
div(0, s(Y)) → 0
div(s(X), s(Y)) → s(div(minus(X, Y), s(Y)))
The set Q consists of the following terms:
minus(x0, 0)
minus(s(x0), s(x1))
p(s(x0))
div(0, s(x0))
div(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(10) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(11) TRUE
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(s(X), s(Y)) → DIV(minus(X, Y), s(Y))
The TRS R consists of the following rules:
minus(X, 0) → X
minus(s(X), s(Y)) → p(minus(X, Y))
p(s(X)) → X
div(0, s(Y)) → 0
div(s(X), s(Y)) → s(div(minus(X, Y), s(Y)))
The set Q consists of the following terms:
minus(x0, 0)
minus(s(x0), s(x1))
p(s(x0))
div(0, s(x0))
div(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(13) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
DIV(s(X), s(Y)) → DIV(minus(X, Y), s(Y))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
DIV(
x1,
x2) =
DIV(
x1)
s(
x1) =
s(
x1)
minus(
x1,
x2) =
x1
0 =
0
p(
x1) =
x1
Lexicographic Path Order [LPO].
Precedence:
DIV1 > s1
The following usable rules [FROCOS05] were oriented:
minus(X, 0) → X
minus(s(X), s(Y)) → p(minus(X, Y))
p(s(X)) → X
(14) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
minus(X, 0) → X
minus(s(X), s(Y)) → p(minus(X, Y))
p(s(X)) → X
div(0, s(Y)) → 0
div(s(X), s(Y)) → s(div(minus(X, Y), s(Y)))
The set Q consists of the following terms:
minus(x0, 0)
minus(s(x0), s(x1))
p(s(x0))
div(0, s(x0))
div(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(15) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(16) TRUE