0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
↳17 QDP
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
pred(s(X)) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
gcd(0, Y) → 0
gcd(s(X), 0) → s(X)
gcd(s(X), s(Y)) → if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) → gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) → gcd(minus(Y, X), s(X))
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
pred(s(X)) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
gcd(0, Y) → 0
gcd(s(X), 0) → s(X)
gcd(s(X), s(Y)) → if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) → gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) → gcd(minus(Y, X), s(X))
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if(true, s(x0), s(x1))
if(false, s(x0), s(x1))
MINUS(X, s(Y)) → PRED(minus(X, Y))
MINUS(X, s(Y)) → MINUS(X, Y)
LE(s(X), s(Y)) → LE(X, Y)
GCD(s(X), s(Y)) → IF(le(Y, X), s(X), s(Y))
GCD(s(X), s(Y)) → LE(Y, X)
IF(true, s(X), s(Y)) → GCD(minus(X, Y), s(Y))
IF(true, s(X), s(Y)) → MINUS(X, Y)
IF(false, s(X), s(Y)) → GCD(minus(Y, X), s(X))
IF(false, s(X), s(Y)) → MINUS(Y, X)
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
pred(s(X)) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
gcd(0, Y) → 0
gcd(s(X), 0) → s(X)
gcd(s(X), s(Y)) → if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) → gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) → gcd(minus(Y, X), s(X))
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if(true, s(x0), s(x1))
if(false, s(x0), s(x1))
LE(s(X), s(Y)) → LE(X, Y)
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
pred(s(X)) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
gcd(0, Y) → 0
gcd(s(X), 0) → s(X)
gcd(s(X), s(Y)) → if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) → gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) → gcd(minus(Y, X), s(X))
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if(true, s(x0), s(x1))
if(false, s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE(s(X), s(Y)) → LE(X, Y)
s1 > LE1
LE1: [1]
s1: [1]
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
pred(s(X)) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
gcd(0, Y) → 0
gcd(s(X), 0) → s(X)
gcd(s(X), s(Y)) → if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) → gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) → gcd(minus(Y, X), s(X))
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if(true, s(x0), s(x1))
if(false, s(x0), s(x1))
MINUS(X, s(Y)) → MINUS(X, Y)
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
pred(s(X)) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
gcd(0, Y) → 0
gcd(s(X), 0) → s(X)
gcd(s(X), s(Y)) → if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) → gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) → gcd(minus(Y, X), s(X))
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if(true, s(x0), s(x1))
if(false, s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS(X, s(Y)) → MINUS(X, Y)
trivial
s1: [1]
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
pred(s(X)) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
gcd(0, Y) → 0
gcd(s(X), 0) → s(X)
gcd(s(X), s(Y)) → if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) → gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) → gcd(minus(Y, X), s(X))
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if(true, s(x0), s(x1))
if(false, s(x0), s(x1))
IF(true, s(X), s(Y)) → GCD(minus(X, Y), s(Y))
GCD(s(X), s(Y)) → IF(le(Y, X), s(X), s(Y))
IF(false, s(X), s(Y)) → GCD(minus(Y, X), s(X))
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
pred(s(X)) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
gcd(0, Y) → 0
gcd(s(X), 0) → s(X)
gcd(s(X), s(Y)) → if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) → gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) → gcd(minus(Y, X), s(X))
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if(true, s(x0), s(x1))
if(false, s(x0), s(x1))