(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(X)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(X)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
rm(x0, nil)
rm(x0, add(x1, x2))
ifrm(true, x0, add(x1, x2))
ifrm(false, x0, add(x1, x2))
purge(nil)
purge(add(x0, x1))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(s(X), s(Y)) → EQ(X, Y)
RM(N, add(M, X)) → IFRM(eq(N, M), N, add(M, X))
RM(N, add(M, X)) → EQ(N, M)
IFRM(true, N, add(M, X)) → RM(N, X)
IFRM(false, N, add(M, X)) → RM(N, X)
PURGE(add(N, X)) → PURGE(rm(N, X))
PURGE(add(N, X)) → RM(N, X)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(X)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
rm(x0, nil)
rm(x0, add(x1, x2))
ifrm(true, x0, add(x1, x2))
ifrm(false, x0, add(x1, x2))
purge(nil)
purge(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 2 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(s(X), s(Y)) → EQ(X, Y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(X)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
rm(x0, nil)
rm(x0, add(x1, x2))
ifrm(true, x0, add(x1, x2))
ifrm(false, x0, add(x1, x2))
purge(nil)
purge(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EQ(s(X), s(Y)) → EQ(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
EQ(x1, x2)  =  EQ(x2)
s(x1)  =  s(x1)
eq(x1, x2)  =  eq
0  =  0
true  =  true
false  =  false
rm(x1, x2)  =  rm
nil  =  nil
add(x1, x2)  =  add
ifrm(x1, x2, x3)  =  ifrm
purge(x1)  =  purge(x1)

Recursive Path Order [RPO].
Precedence:
0 > [EQ1, s1, eq, false] > [true, rm, nil, add, ifrm]
purge1 > [true, rm, nil, add, ifrm]


The following usable rules [FROCOS05] were oriented:

eq(0, 0) → true
eq(0, s(X)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(X)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
rm(x0, nil)
rm(x0, add(x1, x2))
ifrm(true, x0, add(x1, x2))
ifrm(false, x0, add(x1, x2))
purge(nil)
purge(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

RM(N, add(M, X)) → IFRM(eq(N, M), N, add(M, X))
IFRM(true, N, add(M, X)) → RM(N, X)
IFRM(false, N, add(M, X)) → RM(N, X)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(X)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
rm(x0, nil)
rm(x0, add(x1, x2))
ifrm(true, x0, add(x1, x2))
ifrm(false, x0, add(x1, x2))
purge(nil)
purge(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IFRM(true, N, add(M, X)) → RM(N, X)
IFRM(false, N, add(M, X)) → RM(N, X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
RM(x1, x2)  =  RM(x2)
add(x1, x2)  =  add(x2)
IFRM(x1, x2, x3)  =  IFRM(x3)
eq(x1, x2)  =  eq(x1, x2)
true  =  true
false  =  false
0  =  0
s(x1)  =  x1
rm(x1, x2)  =  x2
nil  =  nil
ifrm(x1, x2, x3)  =  x3
purge(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
add1 > [RM1, IFRM1]
eq2 > true > [RM1, IFRM1]
eq2 > false > [RM1, IFRM1]


The following usable rules [FROCOS05] were oriented:

eq(0, 0) → true
eq(0, s(X)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

RM(N, add(M, X)) → IFRM(eq(N, M), N, add(M, X))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(X)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
rm(x0, nil)
rm(x0, add(x1, x2))
ifrm(true, x0, add(x1, x2))
ifrm(false, x0, add(x1, x2))
purge(nil)
purge(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(15) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PURGE(add(N, X)) → PURGE(rm(N, X))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(X)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
rm(x0, nil)
rm(x0, add(x1, x2))
ifrm(true, x0, add(x1, x2))
ifrm(false, x0, add(x1, x2))
purge(nil)
purge(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PURGE(add(N, X)) → PURGE(rm(N, X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PURGE(x1)  =  PURGE(x1)
add(x1, x2)  =  add(x2)
rm(x1, x2)  =  x2
eq(x1, x2)  =  x1
0  =  0
true  =  true
s(x1)  =  s(x1)
false  =  false
nil  =  nil
ifrm(x1, x2, x3)  =  x3
purge(x1)  =  purge(x1)

Recursive Path Order [RPO].
Precedence:
s1 > [0, false] > [PURGE1, add1]
s1 > [0, false] > true
[nil, purge1] > [PURGE1, add1]


The following usable rules [FROCOS05] were oriented:

eq(0, 0) → true
eq(0, s(X)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(X)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
rm(x0, nil)
rm(x0, add(x1, x2))
ifrm(true, x0, add(x1, x2))
ifrm(false, x0, add(x1, x2))
purge(nil)
purge(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE