(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(X), s(Y)) → LE(X, Y)
MINUS(s(X), Y) → IFMINUS(le(s(X), Y), s(X), Y)
MINUS(s(X), Y) → LE(s(X), Y)
IFMINUS(false, s(X), Y) → MINUS(X, Y)
QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
QUOT(s(X), s(Y)) → MINUS(X, Y)

The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 2 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(X), s(Y)) → LE(X, Y)

The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(X), s(Y)) → LE(X, Y)

R is empty.
The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(10) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(X), s(Y)) → LE(X, Y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LE(s(X), s(Y)) → LE(X, Y)
    The graph contains the following edges 1 > 1, 2 > 2

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(X), Y) → IFMINUS(le(s(X), Y), s(X), Y)
IFMINUS(false, s(X), Y) → MINUS(X, Y)

The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(15) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(X), Y) → IFMINUS(le(s(X), Y), s(X), Y)
IFMINUS(false, s(X), Y) → MINUS(X, Y)

The TRS R consists of the following rules:

le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
le(0, Y) → true

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(17) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(X), Y) → IFMINUS(le(s(X), Y), s(X), Y)
IFMINUS(false, s(X), Y) → MINUS(X, Y)

The TRS R consists of the following rules:

le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
le(0, Y) → true

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • IFMINUS(false, s(X), Y) → MINUS(X, Y)
    The graph contains the following edges 2 > 1, 3 >= 2

  • MINUS(s(X), Y) → IFMINUS(le(s(X), Y), s(X), Y)
    The graph contains the following edges 1 >= 2, 2 >= 3

(20) TRUE

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))

The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(22) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))

The TRS R consists of the following rules:

minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
le(0, Y) → true

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(24) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

quot(0, s(x0))
quot(s(x0), s(x1))

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))

The TRS R consists of the following rules:

minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
le(0, Y) → true

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 1   
POL(QUOT(x1, x2)) = x1   
POL(false) = 0   
POL(ifMinus(x1, x2, x3)) = x2   
POL(le(x1, x2)) = 0   
POL(minus(x1, x2)) = x1   
POL(s(x1)) = 1 + x1   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented:

ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)

(27) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
le(0, Y) → true

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(28) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(29) TRUE