0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 QDPOrderProof (⇔)
↳4 QDP
↳5 QDPOrderProof (⇔)
↳6 QDP
↳7 PisEmptyProof (⇔)
↳8 TRUE
plus(s(X), plus(Y, Z)) → plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) → plus(X1, plus(X3, plus(X2, X4)))
PLUS(s(X), plus(Y, Z)) → PLUS(X, plus(s(s(Y)), Z))
PLUS(s(X), plus(Y, Z)) → PLUS(s(s(Y)), Z)
PLUS(s(X1), plus(X2, plus(X3, X4))) → PLUS(X1, plus(X3, plus(X2, X4)))
PLUS(s(X1), plus(X2, plus(X3, X4))) → PLUS(X3, plus(X2, X4))
PLUS(s(X1), plus(X2, plus(X3, X4))) → PLUS(X2, X4)
plus(s(X), plus(Y, Z)) → plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) → plus(X1, plus(X3, plus(X2, X4)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(s(X), plus(Y, Z)) → PLUS(s(s(Y)), Z)
PLUS(s(X1), plus(X2, plus(X3, X4))) → PLUS(X3, plus(X2, X4))
PLUS(s(X1), plus(X2, plus(X3, X4))) → PLUS(X2, X4)
PLUS1 > plus1
PLUS1: [1]
plus1: [1]
plus(s(X1), plus(X2, plus(X3, X4))) → plus(X1, plus(X3, plus(X2, X4)))
plus(s(X), plus(Y, Z)) → plus(X, plus(s(s(Y)), Z))
PLUS(s(X), plus(Y, Z)) → PLUS(X, plus(s(s(Y)), Z))
PLUS(s(X1), plus(X2, plus(X3, X4))) → PLUS(X1, plus(X3, plus(X2, X4)))
plus(s(X), plus(Y, Z)) → plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) → plus(X1, plus(X3, plus(X2, X4)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(s(X), plus(Y, Z)) → PLUS(X, plus(s(s(Y)), Z))
PLUS(s(X1), plus(X2, plus(X3, X4))) → PLUS(X1, plus(X3, plus(X2, X4)))
[PLUS2, s1, plus1]
PLUS2: [2,1]
s1: [1]
plus1: [1]
plus(s(X1), plus(X2, plus(X3, X4))) → plus(X1, plus(X3, plus(X2, X4)))
plus(s(X), plus(Y, Z)) → plus(X, plus(s(s(Y)), Z))
plus(s(X), plus(Y, Z)) → plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) → plus(X1, plus(X3, plus(X2, X4)))