(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

plus(plus(X, Y), Z) → plus(X, plus(Y, Z))
times(X, s(Y)) → plus(X, times(Y, X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(plus(X, Y), Z) → PLUS(X, plus(Y, Z))
PLUS(plus(X, Y), Z) → PLUS(Y, Z)
TIMES(X, s(Y)) → PLUS(X, times(Y, X))
TIMES(X, s(Y)) → TIMES(Y, X)

The TRS R consists of the following rules:

plus(plus(X, Y), Z) → plus(X, plus(Y, Z))
times(X, s(Y)) → plus(X, times(Y, X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(plus(X, Y), Z) → PLUS(Y, Z)
PLUS(plus(X, Y), Z) → PLUS(X, plus(Y, Z))

The TRS R consists of the following rules:

plus(plus(X, Y), Z) → plus(X, plus(Y, Z))
times(X, s(Y)) → plus(X, times(Y, X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES(X, s(Y)) → TIMES(Y, X)

The TRS R consists of the following rules:

plus(plus(X, Y), Z) → plus(X, plus(Y, Z))
times(X, s(Y)) → plus(X, times(Y, X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TIMES(X, s(Y)) → TIMES(Y, X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TIMES(x1, x2)  =  TIMES(x1, x2)
s(x1)  =  s(x1)
plus(x1, x2)  =  x2
times(x1, x2)  =  times

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented:

plus(plus(X, Y), Z) → plus(X, plus(Y, Z))
times(X, s(Y)) → plus(X, times(Y, X))

(8) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

plus(plus(X, Y), Z) → plus(X, plus(Y, Z))
times(X, s(Y)) → plus(X, times(Y, X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(10) TRUE