0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))
f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))
f(x0, empty)
f(x0, cons(x1, x2))
g(empty, x0)
g(cons(x0, x1), x2)
F(a, empty) → G(a, empty)
F(a, cons(x, k)) → F(cons(x, a), k)
G(cons(x, k), d) → G(k, cons(x, d))
f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))
f(x0, empty)
f(x0, cons(x1, x2))
g(empty, x0)
g(cons(x0, x1), x2)
G(cons(x, k), d) → G(k, cons(x, d))
f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))
f(x0, empty)
f(x0, cons(x1, x2))
g(empty, x0)
g(cons(x0, x1), x2)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G(cons(x, k), d) → G(k, cons(x, d))
f2 > [cons2, g2]
empty > [cons2, g2]
cons2: [1,2]
f2: [2,1]
empty: multiset
g2: [1,2]
f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))
f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))
f(x0, empty)
f(x0, cons(x1, x2))
g(empty, x0)
g(cons(x0, x1), x2)
F(a, cons(x, k)) → F(cons(x, a), k)
f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))
f(x0, empty)
f(x0, cons(x1, x2))
g(empty, x0)
g(cons(x0, x1), x2)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F(a, cons(x, k)) → F(cons(x, a), k)
f2 > [cons2, g2]
empty > [cons2, g2]
cons2: [1,2]
f2: [2,1]
empty: multiset
g2: [1,2]
f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))
f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))
f(x0, empty)
f(x0, cons(x1, x2))
g(empty, x0)
g(cons(x0, x1), x2)