(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
rev(ls) → r1(ls, empty)
r1(empty, a) → a
r1(cons(x, k), a) → r1(k, cons(x, a))
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
rev1 > r12 > cons2
rev1 > empty
Status:
r12: [1,2]
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
rev(ls) → r1(ls, empty)
r1(empty, a) → a
r1(cons(x, k), a) → r1(k, cons(x, a))
(2) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(3) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(4) TRUE