0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
f(0) → 0
f(s(x)) → -(s(x), g(f(x)))
g(0) → s(0)
g(s(x)) → -(s(x), f(g(x)))
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
f(0) → 0
f(s(x)) → -(s(x), g(f(x)))
g(0) → s(0)
g(s(x)) → -(s(x), f(g(x)))
-(x0, 0)
-(0, s(x0))
-(s(x0), s(x1))
f(0)
f(s(x0))
g(0)
g(s(x0))
-1(s(x), s(y)) → -1(x, y)
F(s(x)) → -1(s(x), g(f(x)))
F(s(x)) → G(f(x))
F(s(x)) → F(x)
G(s(x)) → -1(s(x), f(g(x)))
G(s(x)) → F(g(x))
G(s(x)) → G(x)
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
f(0) → 0
f(s(x)) → -(s(x), g(f(x)))
g(0) → s(0)
g(s(x)) → -(s(x), f(g(x)))
-(x0, 0)
-(0, s(x0))
-(s(x0), s(x1))
f(0)
f(s(x0))
g(0)
g(s(x0))
-1(s(x), s(y)) → -1(x, y)
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
f(0) → 0
f(s(x)) → -(s(x), g(f(x)))
g(0) → s(0)
g(s(x)) → -(s(x), f(g(x)))
-(x0, 0)
-(0, s(x0))
-(s(x0), s(x1))
f(0)
f(s(x0))
g(0)
g(s(x0))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
-1(s(x), s(y)) → -1(x, y)
s1 > -^11
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
f(0) → 0
f(s(x)) → -(s(x), g(f(x)))
g(0) → s(0)
g(s(x)) → -(s(x), f(g(x)))
-(x0, 0)
-(0, s(x0))
-(s(x0), s(x1))
f(0)
f(s(x0))
g(0)
g(s(x0))
F(s(x)) → G(f(x))
G(s(x)) → F(g(x))
F(s(x)) → F(x)
G(s(x)) → G(x)
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
f(0) → 0
f(s(x)) → -(s(x), g(f(x)))
g(0) → s(0)
g(s(x)) → -(s(x), f(g(x)))
-(x0, 0)
-(0, s(x0))
-(s(x0), s(x1))
f(0)
f(s(x0))
g(0)
g(s(x0))