(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(+(x, y)) → MINUS(minus(minus(x)))
MINUS(+(x, y)) → MINUS(minus(x))
MINUS(+(x, y)) → MINUS(x)
MINUS(+(x, y)) → MINUS(minus(minus(y)))
MINUS(+(x, y)) → MINUS(minus(y))
MINUS(+(x, y)) → MINUS(y)
MINUS(*(x, y)) → MINUS(minus(minus(x)))
MINUS(*(x, y)) → MINUS(minus(x))
MINUS(*(x, y)) → MINUS(x)
MINUS(*(x, y)) → MINUS(minus(minus(y)))
MINUS(*(x, y)) → MINUS(minus(y))
MINUS(*(x, y)) → MINUS(y)
F(minus(x)) → MINUS(minus(minus(f(x))))
F(minus(x)) → MINUS(minus(f(x)))
F(minus(x)) → MINUS(f(x))
F(minus(x)) → F(x)

The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(+(x, y)) → MINUS(minus(x))
MINUS(+(x, y)) → MINUS(minus(minus(x)))
MINUS(+(x, y)) → MINUS(x)
MINUS(+(x, y)) → MINUS(minus(minus(y)))
MINUS(+(x, y)) → MINUS(minus(y))
MINUS(+(x, y)) → MINUS(y)
MINUS(*(x, y)) → MINUS(minus(minus(x)))
MINUS(*(x, y)) → MINUS(minus(x))
MINUS(*(x, y)) → MINUS(x)
MINUS(*(x, y)) → MINUS(minus(minus(y)))
MINUS(*(x, y)) → MINUS(minus(y))
MINUS(*(x, y)) → MINUS(y)

The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(+(x, y)) → MINUS(minus(x))
MINUS(+(x, y)) → MINUS(minus(minus(x)))
MINUS(+(x, y)) → MINUS(x)
MINUS(+(x, y)) → MINUS(minus(minus(y)))
MINUS(+(x, y)) → MINUS(minus(y))
MINUS(+(x, y)) → MINUS(y)
MINUS(*(x, y)) → MINUS(minus(minus(x)))
MINUS(*(x, y)) → MINUS(minus(x))
MINUS(*(x, y)) → MINUS(x)
MINUS(*(x, y)) → MINUS(minus(minus(y)))
MINUS(*(x, y)) → MINUS(minus(y))
MINUS(*(x, y)) → MINUS(y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MINUS(x1)  =  MINUS(x1)
+(x1, x2)  =  +(x1, x2)
minus(x1)  =  x1
*(x1, x2)  =  *(x1, x2)
f(x1)  =  f

Recursive path order with status [RPO].
Quasi-Precedence:
[+2, *2] > MINUS1 > f

Status:
MINUS1: multiset
+2: [1,2]
*2: [1,2]
f: multiset


The following usable rules [FROCOS05] were oriented:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(minus(x)) → F(x)

The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(minus(x)) → F(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1)  =  F(x1)
minus(x1)  =  minus(x1)
+(x1, x2)  =  +
*(x1, x2)  =  *
f(x1)  =  f(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
F1 > minus1
[+, *] > minus1
f1 > minus1

Status:
F1: multiset
minus1: multiset
+: multiset
*: multiset
f1: multiset


The following usable rules [FROCOS05] were oriented:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE