(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(+(x, y)) → MINUS(minus(minus(x)))
MINUS(+(x, y)) → MINUS(minus(x))
MINUS(+(x, y)) → MINUS(x)
MINUS(+(x, y)) → MINUS(minus(minus(y)))
MINUS(+(x, y)) → MINUS(minus(y))
MINUS(+(x, y)) → MINUS(y)
MINUS(*(x, y)) → MINUS(minus(minus(x)))
MINUS(*(x, y)) → MINUS(minus(x))
MINUS(*(x, y)) → MINUS(x)
MINUS(*(x, y)) → MINUS(minus(minus(y)))
MINUS(*(x, y)) → MINUS(minus(y))
MINUS(*(x, y)) → MINUS(y)
F(minus(x)) → MINUS(minus(minus(f(x))))
F(minus(x)) → MINUS(minus(f(x)))
F(minus(x)) → MINUS(f(x))
F(minus(x)) → F(x)

The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(+(x, y)) → MINUS(minus(x))
MINUS(+(x, y)) → MINUS(minus(minus(x)))
MINUS(+(x, y)) → MINUS(x)
MINUS(+(x, y)) → MINUS(minus(minus(y)))
MINUS(+(x, y)) → MINUS(minus(y))
MINUS(+(x, y)) → MINUS(y)
MINUS(*(x, y)) → MINUS(minus(minus(x)))
MINUS(*(x, y)) → MINUS(minus(x))
MINUS(*(x, y)) → MINUS(x)
MINUS(*(x, y)) → MINUS(minus(minus(y)))
MINUS(*(x, y)) → MINUS(minus(y))
MINUS(*(x, y)) → MINUS(y)

The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(minus(x)) → F(x)

The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(minus(x)) → F(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1)  =  x1
minus(x1)  =  minus(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(8) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(10) TRUE