(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

leq(0, y) → true
leq(s(x), 0) → false
leq(s(x), s(y)) → leq(x, y)
if(true, x, y) → x
if(false, x, y) → y
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

leq(0, y) → true
leq(s(x), 0) → false
leq(s(x), s(y)) → leq(x, y)
if(true, x, y) → x
if(false, x, y) → y
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))

The set Q consists of the following terms:

leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
-(x0, 0)
-(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LEQ(s(x), s(y)) → LEQ(x, y)
-1(s(x), s(y)) → -1(x, y)
MOD(s(x), s(y)) → IF(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
MOD(s(x), s(y)) → LEQ(y, x)
MOD(s(x), s(y)) → MOD(-(s(x), s(y)), s(y))
MOD(s(x), s(y)) → -1(s(x), s(y))

The TRS R consists of the following rules:

leq(0, y) → true
leq(s(x), 0) → false
leq(s(x), s(y)) → leq(x, y)
if(true, x, y) → x
if(false, x, y) → y
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))

The set Q consists of the following terms:

leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
-(x0, 0)
-(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)

The TRS R consists of the following rules:

leq(0, y) → true
leq(s(x), 0) → false
leq(s(x), s(y)) → leq(x, y)
if(true, x, y) → x
if(false, x, y) → y
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))

The set Q consists of the following terms:

leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
-(x0, 0)
-(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)

R is empty.
The set Q consists of the following terms:

leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
-(x0, 0)
-(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(10) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
-(x0, 0)
-(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • -1(s(x), s(y)) → -1(x, y)
    The graph contains the following edges 1 > 1, 2 > 2

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LEQ(s(x), s(y)) → LEQ(x, y)

The TRS R consists of the following rules:

leq(0, y) → true
leq(s(x), 0) → false
leq(s(x), s(y)) → leq(x, y)
if(true, x, y) → x
if(false, x, y) → y
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))

The set Q consists of the following terms:

leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
-(x0, 0)
-(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(15) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LEQ(s(x), s(y)) → LEQ(x, y)

R is empty.
The set Q consists of the following terms:

leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
-(x0, 0)
-(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(17) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
-(x0, 0)
-(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LEQ(s(x), s(y)) → LEQ(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LEQ(s(x), s(y)) → LEQ(x, y)
    The graph contains the following edges 1 > 1, 2 > 2

(20) TRUE

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MOD(s(x), s(y)) → MOD(-(s(x), s(y)), s(y))

The TRS R consists of the following rules:

leq(0, y) → true
leq(s(x), 0) → false
leq(s(x), s(y)) → leq(x, y)
if(true, x, y) → x
if(false, x, y) → y
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))

The set Q consists of the following terms:

leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
-(x0, 0)
-(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(22) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MOD(s(x), s(y)) → MOD(-(s(x), s(y)), s(y))

The TRS R consists of the following rules:

-(s(x), s(y)) → -(x, y)
-(x, 0) → x

The set Q consists of the following terms:

leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
-(x0, 0)
-(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(24) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MOD(s(x), s(y)) → MOD(-(s(x), s(y)), s(y))

The TRS R consists of the following rules:

-(s(x), s(y)) → -(x, y)
-(x, 0) → x

The set Q consists of the following terms:

-(x0, 0)
-(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(26) Induction-Processor (SOUND transformation)


This DP could be deleted by the Induction-Processor:
MOD(s(x), s(y)) → MOD(-(s(x), s(y)), s(y))


This order was computed:
Polynomial interpretation [POLO]:

POL(-(x1, x2)) = x1   
POL(0) = 0   
POL(MOD(x1, x2)) = x1   
POL(s(x1)) = 1 + x1   

At least one of these decreasing rules is always used after the deleted DP:
-(s(x), s(y)) → -(x, y)


The following formula is valid:
x:sort[a0],y:sort[a0].-'(s(), s())=true


The transformed set:
-'(s(x), s(y)) → true
-'(x1, 0) → false
-'(0, s(x0)) → false
-'(s(x2), 0) → false
-(s(x), s(y)) → -(x, y)
-(x1, 0) → x1
-(0, s(x0)) → 0
-(s(x2), 0) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a11](witness_sort[a11], witness_sort[a11]) → true

(27) Complex Obligation (AND)

(28) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

-(s(x), s(y)) → -(x, y)
-(x, 0) → x

The set Q consists of the following terms:

-(x0, 0)
-(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(29) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(30) TRUE

(31) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

-'(s(x), s(y)) → true
-'(x1, 0) → false
-'(0, s(x0)) → false
-'(s(x2), 0) → false
-(s(x), s(y)) → -(x, y)
-(x1, 0) → x1
-(0, s(x0)) → 0
-(s(x2), 0) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a11](witness_sort[a11], witness_sort[a11]) → true

Q is empty.

(32) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
-'2 > true
-'2 > false
equalbool2 > true
not1 > true
not1 > false
isafalse1 > true
isafalse1 > false
equalsort[a0]2 > true
equalsort[a0]2 > false
equalsort[a11]2 > true

Status:
trivial

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

-'(s(x), s(y)) → true
-'(x1, 0) → false
-'(0, s(x0)) → false
-'(s(x2), 0) → false
-(s(x), s(y)) → -(x, y)
-(x1, 0) → x1
-(0, s(x0)) → 0
-(s(x2), 0) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a11](witness_sort[a11], witness_sort[a11]) → true


(33) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(34) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(35) TRUE

(36) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(37) TRUE

(38) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(39) TRUE