(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)
*1(x, s(y)) → *1(x, y)
ODD(s(s(x))) → ODD(x)
HALF(s(s(x))) → HALF(x)
POW(x, y) → F(x, y, s(0))
F(x, s(y), z) → IF(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))
F(x, s(y), z) → ODD(s(y))
F(x, s(y), z) → F(x, y, *(x, z))
F(x, s(y), z) → *1(x, z)
F(x, s(y), z) → F(*(x, x), half(s(y)), z)
F(x, s(y), z) → *1(x, x)
F(x, s(y), z) → HALF(s(y))

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 6 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HALF(s(s(x))) → HALF(x)

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HALF(s(s(x))) → HALF(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • HALF(s(s(x))) → HALF(x)
    The graph contains the following edges 1 > 1

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ODD(s(s(x))) → ODD(x)

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ODD(s(s(x))) → ODD(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ODD(s(s(x))) → ODD(x)
    The graph contains the following edges 1 > 1

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(x, s(y)) → *1(x, y)

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(x, s(y)) → *1(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • *1(x, s(y)) → *1(x, y)
    The graph contains the following edges 1 >= 1, 2 > 2

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(x, s(y), z) → F(*(x, x), half(s(y)), z)
F(x, s(y), z) → F(x, y, *(x, z))

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(x, s(y), z) → F(x, y, *(x, z))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(*(x1, x2)) = x1 + x2   
POL(+(x1, x2)) = 0   
POL(0) = 1   
POL(F(x1, x2, x3)) = x2   
POL(half(x1)) = x1   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented:

half(s(0)) → 0
half(0) → 0
half(s(s(x))) → s(half(x))

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(x, s(y), z) → F(*(x, x), half(s(y)), z)

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(x, s(y), z) → F(*(x, x), half(s(y)), z)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(F(x1, x2, x3)) =
/0\
\1/
+
/00\
\00/
·x1 +
/10\
\10/
·x2 +
/00\
\00/
·x3

POL(s(x1)) =
/1\
\0/
+
/11\
\11/
·x1

POL(*(x1, x2)) =
/0\
\1/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(half(x1)) =
/0\
\0/
+
/01\
\01/
·x1

POL(0) =
/0\
\0/

POL(+(x1, x2)) =
/0\
\1/
+
/01\
\01/
·x1 +
/11\
\10/
·x2

The following usable rules [FROCOS05] were oriented:

half(s(0)) → 0
half(0) → 0
half(s(s(x))) → s(half(x))

(24) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(26) TRUE

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • -1(s(x), s(y)) → -1(x, y)
    The graph contains the following edges 1 > 1, 2 > 2

(31) TRUE