(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)
*1(x, s(y)) → *1(x, y)
ODD(s(s(x))) → ODD(x)
HALF(s(s(x))) → HALF(x)
POW(x, y) → F(x, y, s(0))
F(x, s(y), z) → IF(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))
F(x, s(y), z) → ODD(s(y))
F(x, s(y), z) → F(x, y, *(x, z))
F(x, s(y), z) → *1(x, z)
F(x, s(y), z) → F(*(x, x), half(s(y)), z)
F(x, s(y), z) → *1(x, x)
F(x, s(y), z) → HALF(s(y))

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 6 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HALF(s(s(x))) → HALF(x)

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HALF(s(s(x))) → HALF(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
s1 > HALF1


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ODD(s(s(x))) → ODD(x)

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ODD(s(s(x))) → ODD(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
s1 > ODD1


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(x, s(y)) → *1(x, y)

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


*1(x, s(y)) → *1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
*1(x1, x2)  =  x2
s(x1)  =  s(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(x, s(y), z) → F(*(x, x), half(s(y)), z)
F(x, s(y), z) → F(x, y, *(x, z))

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(x, s(y), z) → F(x, y, *(x, z))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1, x2, x3)  =  x2
s(x1)  =  s(x1)
*(x1, x2)  =  x1
half(x1)  =  x1
+(x1, x2)  =  +
0  =  0

Recursive Path Order [RPO].
Precedence:
+ > [s1, 0]


The following usable rules [FROCOS05] were oriented:

half(s(s(x))) → s(half(x))
half(s(0)) → 0
half(0) → 0

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(x, s(y), z) → F(*(x, x), half(s(y)), z)

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)

The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


-1(s(x), s(y)) → -1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
-1(x1, x2)  =  x1
s(x1)  =  s(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(25) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(27) TRUE