(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

p(a(x0), p(a(b(x1)), x2)) → p(a(b(a(x2))), p(a(a(x1)), x2))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P(a(x0), p(a(b(x1)), x2)) → P(a(b(a(x2))), p(a(a(x1)), x2))
P(a(x0), p(a(b(x1)), x2)) → P(a(a(x1)), x2)

The TRS R consists of the following rules:

p(a(x0), p(a(b(x1)), x2)) → p(a(b(a(x2))), p(a(a(x1)), x2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


P(a(x0), p(a(b(x1)), x2)) → P(a(b(a(x2))), p(a(a(x1)), x2))
P(a(x0), p(a(b(x1)), x2)) → P(a(a(x1)), x2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[P2, p2] > b1 > a1

Status:
P2: multiset
a1: [1]
b1: [1]
p2: [2,1]


The following usable rules [FROCOS05] were oriented:

p(a(x0), p(a(b(x1)), x2)) → p(a(b(a(x2))), p(a(a(x1)), x2))

(4) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

p(a(x0), p(a(b(x1)), x2)) → p(a(b(a(x2))), p(a(a(x1)), x2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(6) TRUE