0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 QDP
↳5 QDPOrderProof (⇔)
↳6 QDP
↳7 PisEmptyProof (⇔)
↳8 TRUE
:(:(x, y), z) → :(x, :(y, z))
:(+(x, y), z) → +(:(x, z), :(y, z))
:(z, +(x, f(y))) → :(g(z, y), +(x, a))
:1(:(x, y), z) → :1(x, :(y, z))
:1(:(x, y), z) → :1(y, z)
:1(+(x, y), z) → :1(x, z)
:1(+(x, y), z) → :1(y, z)
:1(z, +(x, f(y))) → :1(g(z, y), +(x, a))
:(:(x, y), z) → :(x, :(y, z))
:(+(x, y), z) → +(:(x, z), :(y, z))
:(z, +(x, f(y))) → :(g(z, y), +(x, a))
:1(:(x, y), z) → :1(y, z)
:1(:(x, y), z) → :1(x, :(y, z))
:1(+(x, y), z) → :1(x, z)
:1(+(x, y), z) → :1(y, z)
:(:(x, y), z) → :(x, :(y, z))
:(+(x, y), z) → +(:(x, z), :(y, z))
:(z, +(x, f(y))) → :(g(z, y), +(x, a))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
:1(:(x, y), z) → :1(y, z)
:1(:(x, y), z) → :1(x, :(y, z))
:1(+(x, y), z) → :1(x, z)
:1(+(x, y), z) → :1(y, z)
:^12 > :2 > [f, a] > +2 > g
:^12: [1,2]
:2: [1,2]
+2: [1,2]
f: []
g: []
a: []
:(:(x, y), z) → :(x, :(y, z))
:(+(x, y), z) → +(:(x, z), :(y, z))
:(z, +(x, f(y))) → :(g(z, y), +(x, a))
:(:(x, y), z) → :(x, :(y, z))
:(+(x, y), z) → +(:(x, z), :(y, z))
:(z, +(x, f(y))) → :(g(z, y), +(x, a))