(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
h(f(x), y) → f(g(x, y))
g(x, y) → h(x, y)
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
h(f(x), y) → f(g(x, y))
g(x, y) → h(x, y)
The set Q consists of the following terms:
h(f(x0), x1)
g(x0, x1)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
H(f(x), y) → G(x, y)
G(x, y) → H(x, y)
The TRS R consists of the following rules:
h(f(x), y) → f(g(x, y))
g(x, y) → h(x, y)
The set Q consists of the following terms:
h(f(x0), x1)
g(x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
H(f(x), y) → G(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
H(
x1,
x2) =
H(
x1,
x2)
f(
x1) =
f(
x1)
G(
x1,
x2) =
G(
x1,
x2)
h(
x1,
x2) =
h(
x1)
g(
x1,
x2) =
g(
x1)
Recursive path order with status [RPO].
Quasi-Precedence:
[H2, G2]
[h1, g1] > f1
Status:
H2: multiset
f1: [1]
G2: multiset
h1: [1]
g1: [1]
The following usable rules [FROCOS05] were oriented:
h(f(x), y) → f(g(x, y))
g(x, y) → h(x, y)
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
G(x, y) → H(x, y)
The TRS R consists of the following rules:
h(f(x), y) → f(g(x, y))
g(x, y) → h(x, y)
The set Q consists of the following terms:
h(f(x0), x1)
g(x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(8) TRUE