(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
p(s(x)) → x
fact(0) → s(0)
fact(s(x)) → *(s(x), fact(p(s(x))))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
p(s(x)) → x
fact(0) → s(0)
fact(s(x)) → *(s(x), fact(p(s(x))))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
The set Q consists of the following terms:
p(s(x0))
fact(0)
fact(s(x0))
*(0, x0)
*(s(x0), x1)
+(x0, 0)
+(x0, s(x1))
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FACT(s(x)) → *1(s(x), fact(p(s(x))))
FACT(s(x)) → FACT(p(s(x)))
FACT(s(x)) → P(s(x))
*1(s(x), y) → +1(*(x, y), y)
*1(s(x), y) → *1(x, y)
+1(x, s(y)) → +1(x, y)
The TRS R consists of the following rules:
p(s(x)) → x
fact(0) → s(0)
fact(s(x)) → *(s(x), fact(p(s(x))))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
The set Q consists of the following terms:
p(s(x0))
fact(0)
fact(s(x0))
*(0, x0)
*(s(x0), x1)
+(x0, 0)
+(x0, s(x1))
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
+1(x, s(y)) → +1(x, y)
The TRS R consists of the following rules:
p(s(x)) → x
fact(0) → s(0)
fact(s(x)) → *(s(x), fact(p(s(x))))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
The set Q consists of the following terms:
p(s(x0))
fact(0)
fact(s(x0))
*(0, x0)
*(s(x0), x1)
+(x0, 0)
+(x0, s(x1))
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
*1(s(x), y) → *1(x, y)
The TRS R consists of the following rules:
p(s(x)) → x
fact(0) → s(0)
fact(s(x)) → *(s(x), fact(p(s(x))))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
The set Q consists of the following terms:
p(s(x0))
fact(0)
fact(s(x0))
*(0, x0)
*(s(x0), x1)
+(x0, 0)
+(x0, s(x1))
We have to consider all minimal (P,Q,R)-chains.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FACT(s(x)) → FACT(p(s(x)))
The TRS R consists of the following rules:
p(s(x)) → x
fact(0) → s(0)
fact(s(x)) → *(s(x), fact(p(s(x))))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
The set Q consists of the following terms:
p(s(x0))
fact(0)
fact(s(x0))
*(0, x0)
*(s(x0), x1)
+(x0, 0)
+(x0, s(x1))
We have to consider all minimal (P,Q,R)-chains.