0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 QDPOrderProof (⇔)
↳4 QDP
↳5 PisEmptyProof (⇔)
↳6 TRUE
not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))
NOT(or(x, y)) → NOT(not(not(x)))
NOT(or(x, y)) → NOT(not(x))
NOT(or(x, y)) → NOT(x)
NOT(or(x, y)) → NOT(not(not(y)))
NOT(or(x, y)) → NOT(not(y))
NOT(or(x, y)) → NOT(y)
NOT(and(x, y)) → NOT(not(not(x)))
NOT(and(x, y)) → NOT(not(x))
NOT(and(x, y)) → NOT(x)
NOT(and(x, y)) → NOT(not(not(y)))
NOT(and(x, y)) → NOT(not(y))
NOT(and(x, y)) → NOT(y)
not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
NOT(or(x, y)) → NOT(not(not(x)))
NOT(or(x, y)) → NOT(not(x))
NOT(or(x, y)) → NOT(x)
NOT(or(x, y)) → NOT(not(not(y)))
NOT(or(x, y)) → NOT(not(y))
NOT(or(x, y)) → NOT(y)
NOT(and(x, y)) → NOT(not(not(x)))
NOT(and(x, y)) → NOT(not(x))
NOT(and(x, y)) → NOT(x)
NOT(and(x, y)) → NOT(not(not(y)))
NOT(and(x, y)) → NOT(not(y))
NOT(and(x, y)) → NOT(y)
[NOT1, or2, and2]
NOT1: [1]
or2: [1,2]
and2: [1,2]
not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))
not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))