(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
not(not(x)) → x
not(or(x, y)) → and(not(x), not(y))
not(and(x, y)) → or(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(or(y, z), x) → or(and(x, y), and(x, z))
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Precedence:
not1 > and2 > or2
Status:
not1: [1]
or2: [1,2]
and2: multiset
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
not(not(x)) → x
not(or(x, y)) → and(not(x), not(y))
not(and(x, y)) → or(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(or(y, z), x) → or(and(x, y), and(x, z))
(2) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(3) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(4) TRUE