(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))
The set Q consists of the following terms:
D(t)
D(constant)
D(+(x0, x1))
D(*(x0, x1))
D(-(x0, x1))
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
D1(+(x, y)) → D1(x)
D1(+(x, y)) → D1(y)
D1(*(x, y)) → D1(x)
D1(*(x, y)) → D1(y)
D1(-(x, y)) → D1(x)
D1(-(x, y)) → D1(y)
The TRS R consists of the following rules:
D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))
The set Q consists of the following terms:
D(t)
D(constant)
D(+(x0, x1))
D(*(x0, x1))
D(-(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
D1(+(x, y)) → D1(x)
D1(+(x, y)) → D1(y)
D1(*(x, y)) → D1(x)
D1(*(x, y)) → D1(y)
D1(-(x, y)) → D1(x)
D1(-(x, y)) → D1(y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
D1(
x1) =
x1
+(
x1,
x2) =
+(
x1,
x2)
*(
x1,
x2) =
*(
x1,
x2)
-(
x1,
x2) =
-(
x1,
x2)
Recursive Path Order [RPO].
Precedence:
trivial
The following usable rules [FROCOS05] were oriented:
none
(6) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))
The set Q consists of the following terms:
D(t)
D(constant)
D(+(x0, x1))
D(*(x0, x1))
D(-(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(7) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(8) TRUE