(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(0(x), j(y)) → j(+(x, y))
+(j(x), 0(y)) → j(+(x, y))
+(1(x), 1(y)) → j(+(+(x, y), 1(#)))
+(j(x), j(y)) → 1(+(+(x, y), j(#)))
+(1(x), j(y)) → 0(+(x, y))
+(j(x), 1(y)) → 0(+(x, y))
+(+(x, y), z) → +(x, +(y, z))
opp(#) → #
opp(0(x)) → 0(opp(x))
opp(1(x)) → j(opp(x))
opp(j(x)) → 1(opp(x))
-(x, y) → +(x, opp(y))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(j(x), y) → -(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
+1(0(x), 0(y)) → 01(+(x, y))
+1(0(x), 0(y)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(0(x), j(y)) → +1(x, y)
+1(j(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
+1(1(x), 1(y)) → +1(x, y)
+1(j(x), j(y)) → +1(+(x, y), j(#))
+1(j(x), j(y)) → +1(x, y)
+1(1(x), j(y)) → 01(+(x, y))
+1(1(x), j(y)) → +1(x, y)
+1(j(x), 1(y)) → 01(+(x, y))
+1(j(x), 1(y)) → +1(x, y)
+1(+(x, y), z) → +1(x, +(y, z))
+1(+(x, y), z) → +1(y, z)
OPP(0(x)) → 01(opp(x))
OPP(0(x)) → OPP(x)
OPP(1(x)) → OPP(x)
OPP(j(x)) → OPP(x)
-1(x, y) → +1(x, opp(y))
-1(x, y) → OPP(y)
*1(0(x), y) → 01(*(x, y))
*1(0(x), y) → *1(x, y)
*1(1(x), y) → +1(0(*(x, y)), y)
*1(1(x), y) → 01(*(x, y))
*1(1(x), y) → *1(x, y)
*1(j(x), y) → -1(0(*(x, y)), y)
*1(j(x), y) → 01(*(x, y))
*1(j(x), y) → *1(x, y)
*1(*(x, y), z) → *1(x, *(y, z))
*1(*(x, y), z) → *1(y, z)
The TRS R consists of the following rules:
0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(0(x), j(y)) → j(+(x, y))
+(j(x), 0(y)) → j(+(x, y))
+(1(x), 1(y)) → j(+(+(x, y), 1(#)))
+(j(x), j(y)) → 1(+(+(x, y), j(#)))
+(1(x), j(y)) → 0(+(x, y))
+(j(x), 1(y)) → 0(+(x, y))
+(+(x, y), z) → +(x, +(y, z))
opp(#) → #
opp(0(x)) → 0(opp(x))
opp(1(x)) → j(opp(x))
opp(j(x)) → 1(opp(x))
-(x, y) → +(x, opp(y))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(j(x), y) → -(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 11 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
OPP(1(x)) → OPP(x)
OPP(0(x)) → OPP(x)
OPP(j(x)) → OPP(x)
The TRS R consists of the following rules:
0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(0(x), j(y)) → j(+(x, y))
+(j(x), 0(y)) → j(+(x, y))
+(1(x), 1(y)) → j(+(+(x, y), 1(#)))
+(j(x), j(y)) → 1(+(+(x, y), j(#)))
+(1(x), j(y)) → 0(+(x, y))
+(j(x), 1(y)) → 0(+(x, y))
+(+(x, y), z) → +(x, +(y, z))
opp(#) → #
opp(0(x)) → 0(opp(x))
opp(1(x)) → j(opp(x))
opp(j(x)) → 1(opp(x))
-(x, y) → +(x, opp(y))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(j(x), y) → -(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
+1(0(x), 1(y)) → +1(x, y)
+1(0(x), 0(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(0(x), j(y)) → +1(x, y)
+1(j(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
+1(1(x), 1(y)) → +1(x, y)
+1(j(x), j(y)) → +1(+(x, y), j(#))
+1(j(x), j(y)) → +1(x, y)
+1(1(x), j(y)) → +1(x, y)
+1(j(x), 1(y)) → +1(x, y)
+1(+(x, y), z) → +1(x, +(y, z))
+1(+(x, y), z) → +1(y, z)
The TRS R consists of the following rules:
0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(0(x), j(y)) → j(+(x, y))
+(j(x), 0(y)) → j(+(x, y))
+(1(x), 1(y)) → j(+(+(x, y), 1(#)))
+(j(x), j(y)) → 1(+(+(x, y), j(#)))
+(1(x), j(y)) → 0(+(x, y))
+(j(x), 1(y)) → 0(+(x, y))
+(+(x, y), z) → +(x, +(y, z))
opp(#) → #
opp(0(x)) → 0(opp(x))
opp(1(x)) → j(opp(x))
opp(j(x)) → 1(opp(x))
-(x, y) → +(x, opp(y))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(j(x), y) → -(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
*1(1(x), y) → *1(x, y)
*1(0(x), y) → *1(x, y)
*1(j(x), y) → *1(x, y)
*1(*(x, y), z) → *1(x, *(y, z))
*1(*(x, y), z) → *1(y, z)
The TRS R consists of the following rules:
0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(0(x), j(y)) → j(+(x, y))
+(j(x), 0(y)) → j(+(x, y))
+(1(x), 1(y)) → j(+(+(x, y), 1(#)))
+(j(x), j(y)) → 1(+(+(x, y), j(#)))
+(1(x), j(y)) → 0(+(x, y))
+(j(x), 1(y)) → 0(+(x, y))
+(+(x, y), z) → +(x, +(y, z))
opp(#) → #
opp(0(x)) → 0(opp(x))
opp(1(x)) → j(opp(x))
opp(j(x)) → 1(opp(x))
-(x, y) → +(x, opp(y))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(j(x), y) → -(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.