(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(0(x), 0(y)) → 01(+(x, y))
+1(0(x), 0(y)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → 01(+(+(x, y), 1(#)))
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
+1(1(x), 1(y)) → +1(x, y)
+1(+(x, y), z) → +1(x, +(y, z))
+1(+(x, y), z) → +1(y, z)
-1(0(x), 0(y)) → 01(-(x, y))
-1(0(x), 0(y)) → -1(x, y)
-1(0(x), 1(y)) → -1(-(x, y), 1(#))
-1(0(x), 1(y)) → -1(x, y)
-1(1(x), 0(y)) → -1(x, y)
-1(1(x), 1(y)) → 01(-(x, y))
-1(1(x), 1(y)) → -1(x, y)
GE(0(x), 0(y)) → GE(x, y)
GE(0(x), 1(y)) → NOT(ge(y, x))
GE(0(x), 1(y)) → GE(y, x)
GE(1(x), 0(y)) → GE(x, y)
GE(1(x), 1(y)) → GE(x, y)
GE(#, 0(x)) → GE(#, x)
LOG(x) → -1(log'(x), 1(#))
LOG(x) → LOG'(x)
LOG'(1(x)) → +1(log'(x), 1(#))
LOG'(1(x)) → LOG'(x)
LOG'(0(x)) → IF(ge(x, 1(#)), +(log'(x), 1(#)), #)
LOG'(0(x)) → GE(x, 1(#))
LOG'(0(x)) → +1(log'(x), 1(#))
LOG'(0(x)) → LOG'(x)

The TRS R consists of the following rules:

0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 11 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GE(#, 0(x)) → GE(#, x)

The TRS R consists of the following rules:

0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


GE(#, 0(x)) → GE(#, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
[#, 01] > GE2


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GE(0(x), 1(y)) → GE(y, x)
GE(0(x), 0(y)) → GE(x, y)
GE(1(x), 0(y)) → GE(x, y)
GE(1(x), 1(y)) → GE(x, y)

The TRS R consists of the following rules:

0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(0(x), 1(y)) → -1(-(x, y), 1(#))
-1(0(x), 1(y)) → -1(x, y)
-1(0(x), 0(y)) → -1(x, y)
-1(1(x), 0(y)) → -1(x, y)
-1(1(x), 1(y)) → -1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


-1(0(x), 1(y)) → -1(x, y)
-1(0(x), 0(y)) → -1(x, y)
-1(1(x), 0(y)) → -1(x, y)
-1(1(x), 1(y)) → -1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
-1(x1, x2)  =  -1(x2)
0(x1)  =  0(x1)
1(x1)  =  1(x1)
-(x1, x2)  =  x2
#  =  #

Lexicographic Path Order [LPO].
Precedence:
[-^11, 01] > [11, #]


The following usable rules [FROCOS05] were oriented: none

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(0(x), 1(y)) → -1(-(x, y), 1(#))

The TRS R consists of the following rules:

0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


-1(0(x), 1(y)) → -1(-(x, y), 1(#))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
-1(x1, x2)  =  -1(x1)
0(x1)  =  0(x1)
1(x1)  =  1(x1)
-(x1, x2)  =  x1
#  =  #

Lexicographic Path Order [LPO].
Precedence:
# > [-^11, 01, 11]


The following usable rules [FROCOS05] were oriented:

-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
0(#) → #

(15) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(17) TRUE

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(0(x), 1(y)) → +1(x, y)
+1(0(x), 0(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
+1(1(x), 1(y)) → +1(x, y)
+1(+(x, y), z) → +1(x, +(y, z))
+1(+(x, y), z) → +1(y, z)

The TRS R consists of the following rules:

0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOG'(0(x)) → LOG'(x)
LOG'(1(x)) → LOG'(x)

The TRS R consists of the following rules:

0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LOG'(0(x)) → LOG'(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LOG'(x1)  =  x1
0(x1)  =  0(x1)
1(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOG'(1(x)) → LOG'(x)

The TRS R consists of the following rules:

0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LOG'(1(x)) → LOG'(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LOG'(x1)  =  x1
1(x1)  =  1(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE