(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
+1(0(x), 0(y)) → 01(+(x, y))
+1(0(x), 0(y)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → 01(+(+(x, y), 1(#)))
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
+1(1(x), 1(y)) → +1(x, y)
+1(+(x, y), z) → +1(x, +(y, z))
+1(+(x, y), z) → +1(y, z)
-1(0(x), 0(y)) → 01(-(x, y))
-1(0(x), 0(y)) → -1(x, y)
-1(0(x), 1(y)) → -1(-(x, y), 1(#))
-1(0(x), 1(y)) → -1(x, y)
-1(1(x), 0(y)) → -1(x, y)
-1(1(x), 1(y)) → 01(-(x, y))
-1(1(x), 1(y)) → -1(x, y)
GE(0(x), 0(y)) → GE(x, y)
GE(0(x), 1(y)) → NOT(ge(y, x))
GE(0(x), 1(y)) → GE(y, x)
GE(1(x), 0(y)) → GE(x, y)
GE(1(x), 1(y)) → GE(x, y)
GE(#, 0(x)) → GE(#, x)
LOG(x) → -1(log'(x), 1(#))
LOG(x) → LOG'(x)
LOG'(1(x)) → +1(log'(x), 1(#))
LOG'(1(x)) → LOG'(x)
LOG'(0(x)) → IF(ge(x, 1(#)), +(log'(x), 1(#)), #)
LOG'(0(x)) → GE(x, 1(#))
LOG'(0(x)) → +1(log'(x), 1(#))
LOG'(0(x)) → LOG'(x)
The TRS R consists of the following rules:
0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 11 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(#, 0(x)) → GE(#, x)
The TRS R consists of the following rules:
0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(0(x), 1(y)) → GE(y, x)
GE(0(x), 0(y)) → GE(x, y)
GE(1(x), 0(y)) → GE(x, y)
GE(1(x), 1(y)) → GE(x, y)
The TRS R consists of the following rules:
0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
-1(0(x), 1(y)) → -1(-(x, y), 1(#))
-1(0(x), 1(y)) → -1(x, y)
-1(0(x), 0(y)) → -1(x, y)
-1(1(x), 0(y)) → -1(x, y)
-1(1(x), 1(y)) → -1(x, y)
The TRS R consists of the following rules:
0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
+1(0(x), 1(y)) → +1(x, y)
+1(0(x), 0(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
+1(1(x), 1(y)) → +1(x, y)
+1(+(x, y), z) → +1(x, +(y, z))
+1(+(x, y), z) → +1(y, z)
The TRS R consists of the following rules:
0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LOG'(0(x)) → LOG'(x)
LOG'(1(x)) → LOG'(x)
The TRS R consists of the following rules:
0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.