(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

The set Q consists of the following terms:

+(x0, 0)
+(0, x0)
+(s(x0), s(x1))
*(x0, 0)
*(0, x0)
*(s(x0), s(x1))
sum(nil)
sum(cons(x0, x1))
prod(nil)
prod(cons(x0, x1))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(s(x), s(y)) → +1(x, y)
*1(s(x), s(y)) → +1(*(x, y), +(x, y))
*1(s(x), s(y)) → *1(x, y)
*1(s(x), s(y)) → +1(x, y)
SUM(cons(x, l)) → +1(x, sum(l))
SUM(cons(x, l)) → SUM(l)
PROD(cons(x, l)) → *1(x, prod(l))
PROD(cons(x, l)) → PROD(l)

The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

The set Q consists of the following terms:

+(x0, 0)
+(0, x0)
+(s(x0), s(x1))
*(x0, 0)
*(0, x0)
*(s(x0), s(x1))
sum(nil)
sum(cons(x0, x1))
prod(nil)
prod(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(s(x), s(y)) → +1(x, y)

The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

The set Q consists of the following terms:

+(x0, 0)
+(0, x0)
+(s(x0), s(x1))
*(x0, 0)
*(0, x0)
*(s(x0), s(x1))
sum(nil)
sum(cons(x0, x1))
prod(nil)
prod(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


+1(s(x), s(y)) → +1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
+1(x1, x2)  =  x2
s(x1)  =  s(x1)
+(x1, x2)  =  +(x1, x2)
0  =  0
*(x1, x2)  =  *(x1, x2)
sum(x1)  =  x1
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
prod(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
nil > s1
nil > 0
cons2 > *2 > +2 > s1

Status:
trivial

The following usable rules [FROCOS05] were oriented:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

The set Q consists of the following terms:

+(x0, 0)
+(0, x0)
+(s(x0), s(x1))
*(x0, 0)
*(0, x0)
*(s(x0), s(x1))
sum(nil)
sum(cons(x0, x1))
prod(nil)
prod(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(cons(x, l)) → SUM(l)

The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

The set Q consists of the following terms:

+(x0, 0)
+(0, x0)
+(s(x0), s(x1))
*(x0, 0)
*(0, x0)
*(s(x0), s(x1))
sum(nil)
sum(cons(x0, x1))
prod(nil)
prod(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SUM(cons(x, l)) → SUM(l)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SUM(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
+(x1, x2)  =  +(x1, x2)
0  =  0
s(x1)  =  s
*(x1, x2)  =  *
sum(x1)  =  x1
nil  =  nil
prod(x1)  =  prod

Recursive path order with status [RPO].
Precedence:
cons2 > +2
nil > 0
prod > * > 0
prod > * > s

Status:
trivial

The following usable rules [FROCOS05] were oriented:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

The set Q consists of the following terms:

+(x0, 0)
+(0, x0)
+(s(x0), s(x1))
*(x0, 0)
*(0, x0)
*(s(x0), s(x1))
sum(nil)
sum(cons(x0, x1))
prod(nil)
prod(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(s(x), s(y)) → *1(x, y)

The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

The set Q consists of the following terms:

+(x0, 0)
+(0, x0)
+(s(x0), s(x1))
*(x0, 0)
*(0, x0)
*(s(x0), s(x1))
sum(nil)
sum(cons(x0, x1))
prod(nil)
prod(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


*1(s(x), s(y)) → *1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
*1(x1, x2)  =  x2
s(x1)  =  s(x1)
+(x1, x2)  =  +(x1, x2)
0  =  0
*(x1, x2)  =  *(x1, x2)
sum(x1)  =  x1
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
prod(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
nil > s1
nil > 0
cons2 > *2 > +2 > s1

Status:
trivial

The following usable rules [FROCOS05] were oriented:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

The set Q consists of the following terms:

+(x0, 0)
+(0, x0)
+(s(x0), s(x1))
*(x0, 0)
*(0, x0)
*(s(x0), s(x1))
sum(nil)
sum(cons(x0, x1))
prod(nil)
prod(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROD(cons(x, l)) → PROD(l)

The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

The set Q consists of the following terms:

+(x0, 0)
+(0, x0)
+(s(x0), s(x1))
*(x0, 0)
*(0, x0)
*(s(x0), s(x1))
sum(nil)
sum(cons(x0, x1))
prod(nil)
prod(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROD(cons(x, l)) → PROD(l)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROD(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
+(x1, x2)  =  +(x1, x2)
0  =  0
s(x1)  =  s
*(x1, x2)  =  *
sum(x1)  =  x1
nil  =  nil
prod(x1)  =  prod

Recursive path order with status [RPO].
Precedence:
cons2 > +2
nil > 0
prod > * > 0
prod > * > s

Status:
trivial

The following usable rules [FROCOS05] were oriented:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

(24) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

The set Q consists of the following terms:

+(x0, 0)
+(0, x0)
+(s(x0), s(x1))
*(x0, 0)
*(0, x0)
*(s(x0), s(x1))
sum(nil)
sum(cons(x0, x1))
prod(nil)
prod(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(25) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(26) TRUE