(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
+1(s(x), s(y)) → +1(x, y)
+1(+(x, y), z) → +1(x, +(y, z))
+1(+(x, y), z) → +1(y, z)
*1(s(x), s(y)) → +1(*(x, y), +(x, y))
*1(s(x), s(y)) → *1(x, y)
*1(s(x), s(y)) → +1(x, y)
*1(*(x, y), z) → *1(x, *(y, z))
*1(*(x, y), z) → *1(y, z)
SUM(cons(x, l)) → +1(x, sum(l))
SUM(cons(x, l)) → SUM(l)
PROD(cons(x, l)) → *1(x, prod(l))
PROD(cons(x, l)) → PROD(l)
The TRS R consists of the following rules:
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
+1(+(x, y), z) → +1(x, +(y, z))
+1(s(x), s(y)) → +1(x, y)
+1(+(x, y), z) → +1(y, z)
The TRS R consists of the following rules:
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUM(cons(x, l)) → SUM(l)
The TRS R consists of the following rules:
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
*1(*(x, y), z) → *1(x, *(y, z))
*1(s(x), s(y)) → *1(x, y)
*1(*(x, y), z) → *1(y, z)
The TRS R consists of the following rules:
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PROD(cons(x, l)) → PROD(l)
The TRS R consists of the following rules:
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.