(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)
APP(cons(x, l1), l2) → APP(l1, l2)
APP(app(l1, l2), l3) → APP(l1, app(l2, l3))
APP(app(l1, l2), l3) → APP(l2, l3)
MEM(x, cons(y, l)) → IFMEM(eq(x, y), x, l)
MEM(x, cons(y, l)) → EQ(x, y)
IFMEM(false, x, l) → MEM(x, l)
INTER(app(l1, l2), l3) → APP(inter(l1, l3), inter(l2, l3))
INTER(app(l1, l2), l3) → INTER(l1, l3)
INTER(app(l1, l2), l3) → INTER(l2, l3)
INTER(l1, app(l2, l3)) → APP(inter(l1, l2), inter(l1, l3))
INTER(l1, app(l2, l3)) → INTER(l1, l2)
INTER(l1, app(l2, l3)) → INTER(l1, l3)
INTER(cons(x, l1), l2) → IFINTER(mem(x, l2), x, l1, l2)
INTER(cons(x, l1), l2) → MEM(x, l2)
INTER(l1, cons(x, l2)) → IFINTER(mem(x, l1), x, l2, l1)
INTER(l1, cons(x, l2)) → MEM(x, l1)
IFINTER(true, x, l1, l2) → INTER(l1, l2)
IFINTER(false, x, l1, l2) → INTER(l1, l2)

The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 5 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(l1, l2), l3) → APP(l1, app(l2, l3))
APP(cons(x, l1), l2) → APP(l1, l2)
APP(app(l1, l2), l3) → APP(l2, l3)

The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(l1, l2), l3) → APP(l1, app(l2, l3))
APP(app(l1, l2), l3) → APP(l2, l3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x1)
app(x1, x2)  =  app(x1, x2)
cons(x1, x2)  =  x2
if(x1, x2, x3)  =  if(x1, x2, x3)
true  =  true
false  =  false
eq(x1, x2)  =  eq(x2)
0  =  0
s(x1)  =  x1
nil  =  nil
mem(x1, x2)  =  x2
ifmem(x1, x2, x3)  =  x3
inter(x1, x2)  =  inter(x1, x2)
ifinter(x1, x2, x3, x4)  =  ifinter(x3, x4)

Recursive path order with status [RPO].
Quasi-Precedence:
APP1 > app2 > true
if3 > true
eq1 > false > true
0 > false > true
nil > false > true
[inter2, ifinter2] > app2 > true

Status:
APP1: multiset
app2: [1,2]
if3: multiset
true: multiset
false: multiset
eq1: multiset
0: multiset
nil: multiset
inter2: multiset
ifinter2: multiset


The following usable rules [FROCOS05] were oriented:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(cons(x, l1), l2) → APP(l1, l2)

The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(cons(x, l1), l2) → APP(l1, l2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
if(x1, x2, x3)  =  if(x1, x2, x3)
true  =  true
false  =  false
eq(x1, x2)  =  eq
0  =  0
s(x1)  =  s(x1)
app(x1, x2)  =  app(x1, x2)
nil  =  nil
mem(x1, x2)  =  x2
ifmem(x1, x2, x3)  =  ifmem(x1, x3)
inter(x1, x2)  =  inter(x1, x2)
ifinter(x1, x2, x3, x4)  =  ifinter(x2, x3, x4)

Recursive path order with status [RPO].
Quasi-Precedence:
if3 > ifmem2
0 > ifmem2
s1 > ifmem2
[inter2, ifinter3] > app2 > [cons2, true, eq] > APP2 > ifmem2
[inter2, ifinter3] > app2 > [cons2, true, eq] > [false, nil] > ifmem2

Status:
APP2: multiset
cons2: multiset
if3: multiset
true: multiset
false: multiset
eq: multiset
0: multiset
s1: multiset
app2: [1,2]
nil: multiset
ifmem2: multiset
inter2: multiset
ifinter3: multiset


The following usable rules [FROCOS05] were oriented:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EQ(s(x), s(y)) → EQ(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
EQ(x1, x2)  =  EQ(x2)
s(x1)  =  s(x1)
if(x1, x2, x3)  =  if(x1, x2, x3)
true  =  true
false  =  false
eq(x1, x2)  =  eq
0  =  0
app(x1, x2)  =  x2
nil  =  nil
cons(x1, x2)  =  cons
mem(x1, x2)  =  mem
ifmem(x1, x2, x3)  =  x1
inter(x1, x2)  =  inter
ifinter(x1, x2, x3, x4)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
EQ1 > [true, false, eq, 0, nil, cons, mem, inter]
s1 > [true, false, eq, 0, nil, cons, mem, inter]
if3 > [true, false, eq, 0, nil, cons, mem, inter]

Status:
EQ1: multiset
s1: multiset
if3: multiset
true: multiset
false: multiset
eq: []
0: multiset
nil: multiset
cons: []
mem: []
inter: []


The following usable rules [FROCOS05] were oriented:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MEM(x, cons(y, l)) → IFMEM(eq(x, y), x, l)
IFMEM(false, x, l) → MEM(x, l)

The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MEM(x, cons(y, l)) → IFMEM(eq(x, y), x, l)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MEM(x1, x2)  =  MEM(x2)
cons(x1, x2)  =  cons(x1, x2)
IFMEM(x1, x2, x3)  =  IFMEM(x3)
eq(x1, x2)  =  eq(x1, x2)
false  =  false
if(x1, x2, x3)  =  if(x1, x2, x3)
true  =  true
0  =  0
s(x1)  =  x1
app(x1, x2)  =  app(x1, x2)
nil  =  nil
mem(x1, x2)  =  x2
ifmem(x1, x2, x3)  =  ifmem(x3)
inter(x1, x2)  =  inter(x1, x2)
ifinter(x1, x2, x3, x4)  =  ifinter(x2, x3, x4)

Recursive path order with status [RPO].
Quasi-Precedence:
[MEM1, IFMEM1] > [eq2, false, nil]
if3 > [eq2, false, nil]
0 > true > [eq2, false, nil]
[inter2, ifinter3] > [cons2, app2] > ifmem1 > true > [eq2, false, nil]

Status:
MEM1: multiset
cons2: [1,2]
IFMEM1: multiset
eq2: multiset
false: multiset
if3: multiset
true: multiset
0: multiset
app2: [1,2]
nil: multiset
ifmem1: multiset
inter2: multiset
ifinter3: multiset


The following usable rules [FROCOS05] were oriented:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IFMEM(false, x, l) → MEM(x, l)

The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INTER(app(l1, l2), l3) → INTER(l2, l3)
INTER(app(l1, l2), l3) → INTER(l1, l3)
INTER(l1, app(l2, l3)) → INTER(l1, l2)
INTER(l1, app(l2, l3)) → INTER(l1, l3)
INTER(cons(x, l1), l2) → IFINTER(mem(x, l2), x, l1, l2)
IFINTER(true, x, l1, l2) → INTER(l1, l2)
INTER(l1, cons(x, l2)) → IFINTER(mem(x, l1), x, l2, l1)
IFINTER(false, x, l1, l2) → INTER(l1, l2)

The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INTER(app(l1, l2), l3) → INTER(l2, l3)
INTER(app(l1, l2), l3) → INTER(l1, l3)
INTER(l1, app(l2, l3)) → INTER(l1, l2)
INTER(l1, app(l2, l3)) → INTER(l1, l3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
INTER(x1, x2)  =  INTER(x1, x2)
app(x1, x2)  =  app(x1, x2)
cons(x1, x2)  =  x2
IFINTER(x1, x2, x3, x4)  =  IFINTER(x3, x4)
mem(x1, x2)  =  mem
true  =  true
false  =  false
if(x1, x2, x3)  =  if(x1, x2, x3)
eq(x1, x2)  =  eq
0  =  0
s(x1)  =  s
nil  =  nil
ifmem(x1, x2, x3)  =  x1
inter(x1, x2)  =  inter(x1, x2)
ifinter(x1, x2, x3, x4)  =  ifinter(x3, x4)

Recursive path order with status [RPO].
Quasi-Precedence:
if3 > [INTER2, app2, IFINTER2, mem, true, false, eq, s]
0 > [INTER2, app2, IFINTER2, mem, true, false, eq, s]
nil > [INTER2, app2, IFINTER2, mem, true, false, eq, s]
[inter2, ifinter2] > [INTER2, app2, IFINTER2, mem, true, false, eq, s]

Status:
INTER2: multiset
app2: [1,2]
IFINTER2: multiset
mem: multiset
true: multiset
false: multiset
if3: multiset
eq: multiset
0: multiset
s: []
nil: multiset
inter2: multiset
ifinter2: multiset


The following usable rules [FROCOS05] were oriented:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INTER(cons(x, l1), l2) → IFINTER(mem(x, l2), x, l1, l2)
IFINTER(true, x, l1, l2) → INTER(l1, l2)
INTER(l1, cons(x, l2)) → IFINTER(mem(x, l1), x, l2, l1)
IFINTER(false, x, l1, l2) → INTER(l1, l2)

The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INTER(cons(x, l1), l2) → IFINTER(mem(x, l2), x, l1, l2)
IFINTER(true, x, l1, l2) → INTER(l1, l2)
INTER(l1, cons(x, l2)) → IFINTER(mem(x, l1), x, l2, l1)
IFINTER(false, x, l1, l2) → INTER(l1, l2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
INTER(x1, x2)  =  INTER(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
IFINTER(x1, x2, x3, x4)  =  IFINTER(x2, x3, x4)
mem(x1, x2)  =  x2
true  =  true
false  =  false
if(x1, x2, x3)  =  if(x2, x3)
eq(x1, x2)  =  x2
0  =  0
s(x1)  =  x1
app(x1, x2)  =  app(x1, x2)
nil  =  nil
ifmem(x1, x2, x3)  =  ifmem(x1, x3)
inter(x1, x2)  =  inter(x1, x2)
ifinter(x1, x2, x3, x4)  =  ifinter(x2, x3, x4)

Recursive path order with status [RPO].
Quasi-Precedence:
[INTER2, IFINTER3] > [cons2, true, false, 0, ifmem2]
if2 > [cons2, true, false, 0, ifmem2]
nil > [cons2, true, false, 0, ifmem2]
[inter2, ifinter3] > app2 > [cons2, true, false, 0, ifmem2]

Status:
INTER2: multiset
cons2: [1,2]
IFINTER3: multiset
true: multiset
false: multiset
if2: multiset
0: multiset
app2: [1,2]
nil: multiset
ifmem2: [1,2]
inter2: multiset
ifinter3: multiset


The following usable rules [FROCOS05] were oriented:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

(26) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(28) TRUE