(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(f(x)) → f(c(f(x)))
f(f(x)) → f(d(f(x)))
g(c(x)) → x
g(d(x)) → x
g(c(0)) → g(d(1))
g(c(1)) → g(d(0))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(f(x)) → F(c(f(x)))
F(f(x)) → F(d(f(x)))
G(c(0)) → G(d(1))
G(c(1)) → G(d(0))
The TRS R consists of the following rules:
f(f(x)) → f(c(f(x)))
f(f(x)) → f(d(f(x)))
g(c(x)) → x
g(d(x)) → x
g(c(0)) → g(d(1))
g(c(1)) → g(d(0))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 4 less nodes.
(4) TRUE