(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
xor(x, F) → x
xor(x, neg(x)) → F
and(x, T) → x
and(x, F) → F
and(x, x) → x
and(xor(x, y), z) → xor(and(x, z), and(y, z))
xor(x, x) → F
impl(x, y) → xor(and(x, y), xor(x, T))
or(x, y) → xor(and(x, y), xor(x, y))
equiv(x, y) → xor(x, xor(y, T))
neg(x) → xor(x, T)
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
neg1 > xor2 > F
neg1 > T
impl2 > and2 > xor2 > F
impl2 > T
or2 > and2 > xor2 > F
equiv2 > xor2 > F
equiv2 > T
Status:
trivial
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
xor(x, F) → x
xor(x, neg(x)) → F
and(x, T) → x
and(x, F) → F
and(x, x) → x
and(xor(x, y), z) → xor(and(x, z), and(y, z))
xor(x, x) → F
impl(x, y) → xor(and(x, y), xor(x, T))
or(x, y) → xor(and(x, y), xor(x, y))
equiv(x, y) → xor(x, xor(y, T))
neg(x) → xor(x, T)
(2) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(3) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(4) TRUE