(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(0(x), 0(y)) → 01(+(x, y))
+1(0(x), 0(y)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → 01(+(+(x, y), 1(#)))
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
+1(1(x), 1(y)) → +1(x, y)
+1(+(x, y), z) → +1(x, +(y, z))
+1(+(x, y), z) → +1(y, z)
-1(0(x), 0(y)) → 01(-(x, y))
-1(0(x), 0(y)) → -1(x, y)
-1(0(x), 1(y)) → -1(-(x, y), 1(#))
-1(0(x), 1(y)) → -1(x, y)
-1(1(x), 0(y)) → -1(x, y)
-1(1(x), 1(y)) → 01(-(x, y))
-1(1(x), 1(y)) → -1(x, y)
EQ(#, 0(y)) → EQ(#, y)
EQ(0(x), #) → EQ(x, #)
EQ(1(x), 1(y)) → EQ(x, y)
EQ(0(x), 0(y)) → EQ(x, y)
GE(0(x), 0(y)) → GE(x, y)
GE(0(x), 1(y)) → NOT(ge(y, x))
GE(0(x), 1(y)) → GE(y, x)
GE(1(x), 0(y)) → GE(x, y)
GE(1(x), 1(y)) → GE(x, y)
GE(#, 0(x)) → GE(#, x)
LOG(x) → -1(log'(x), 1(#))
LOG(x) → LOG'(x)
LOG'(1(x)) → +1(log'(x), 1(#))
LOG'(1(x)) → LOG'(x)
LOG'(0(x)) → IF(ge(x, 1(#)), +(log'(x), 1(#)), #)
LOG'(0(x)) → GE(x, 1(#))
LOG'(0(x)) → +1(log'(x), 1(#))
LOG'(0(x)) → LOG'(x)
*1(0(x), y) → 01(*(x, y))
*1(0(x), y) → *1(x, y)
*1(1(x), y) → +1(0(*(x, y)), y)
*1(1(x), y) → 01(*(x, y))
*1(1(x), y) → *1(x, y)
*1(*(x, y), z) → *1(x, *(y, z))
*1(*(x, y), z) → *1(y, z)
*1(x, +(y, z)) → +1(*(x, y), *(x, z))
*1(x, +(y, z)) → *1(x, y)
*1(x, +(y, z)) → *1(x, z)
APP(cons(x, l1), l2) → APP(l1, l2)
SUM(nil) → 01(#)
SUM(cons(x, l)) → +1(x, sum(l))
SUM(cons(x, l)) → SUM(l)
SUM(app(l1, l2)) → +1(sum(l1), sum(l2))
SUM(app(l1, l2)) → SUM(l1)
SUM(app(l1, l2)) → SUM(l2)
PROD(cons(x, l)) → *1(x, prod(l))
PROD(cons(x, l)) → PROD(l)
PROD(app(l1, l2)) → *1(prod(l1), prod(l2))
PROD(app(l1, l2)) → PROD(l1)
PROD(app(l1, l2)) → PROD(l2)
MEM(x, cons(y, l)) → IF(eq(x, y), true, mem(x, l))
MEM(x, cons(y, l)) → EQ(x, y)
MEM(x, cons(y, l)) → MEM(x, l)
INTER(app(l1, l2), l3) → APP(inter(l1, l3), inter(l2, l3))
INTER(app(l1, l2), l3) → INTER(l1, l3)
INTER(app(l1, l2), l3) → INTER(l2, l3)
INTER(l1, app(l2, l3)) → APP(inter(l1, l2), inter(l1, l3))
INTER(l1, app(l2, l3)) → INTER(l1, l2)
INTER(l1, app(l2, l3)) → INTER(l1, l3)
INTER(cons(x, l1), l2) → IFINTER(mem(x, l2), x, l1, l2)
INTER(cons(x, l1), l2) → MEM(x, l2)
INTER(l1, cons(x, l2)) → IFINTER(mem(x, l1), x, l2, l1)
INTER(l1, cons(x, l2)) → MEM(x, l1)
IFINTER(true, x, l1, l2) → INTER(l1, l2)
IFINTER(false, x, l1, l2) → INTER(l1, l2)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 14 SCCs with 26 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(cons(x, l1), l2) → APP(l1, l2)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(cons(x, l1), l2) → APP(l1, l2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[APP2, cons2]

Status:
cons2: [2,1]
APP2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GE(#, 0(x)) → GE(#, x)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


GE(#, 0(x)) → GE(#, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
GE(x1, x2)  =  x2
#  =  #
0(x1)  =  0(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
01: [1]
#: []


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GE(0(x), 1(y)) → GE(y, x)
GE(0(x), 0(y)) → GE(x, y)
GE(1(x), 0(y)) → GE(x, y)
GE(1(x), 1(y)) → GE(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(0(x), #) → EQ(x, #)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EQ(0(x), #) → EQ(x, #)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
# > EQ2

Status:
EQ2: [1,2]
01: [1]
#: []


The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(20) TRUE

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(#, 0(y)) → EQ(#, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EQ(#, 0(y)) → EQ(#, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
EQ(x1, x2)  =  x2
#  =  #
0(x1)  =  0(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
01: [1]
#: []


The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(0(x), 0(y)) → EQ(x, y)
EQ(1(x), 1(y)) → EQ(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EQ(0(x), 0(y)) → EQ(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
EQ(x1, x2)  =  EQ(x1, x2)
0(x1)  =  0(x1)
1(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
01 > EQ2

Status:
EQ2: [2,1]
01: [1]


The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(1(x), 1(y)) → EQ(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EQ(1(x), 1(y)) → EQ(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
EQ(x1, x2)  =  EQ(x2)
1(x1)  =  1(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
11: [1]
EQ1: [1]


The following usable rules [FROCOS05] were oriented: none

(30) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(32) TRUE

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MEM(x, cons(y, l)) → MEM(x, l)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MEM(x, cons(y, l)) → MEM(x, l)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MEM(x1, x2)  =  x2
cons(x1, x2)  =  cons(x1, x2)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
cons2: [1,2]


The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(37) TRUE

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INTER(app(l1, l2), l3) → INTER(l2, l3)
INTER(app(l1, l2), l3) → INTER(l1, l3)
INTER(l1, app(l2, l3)) → INTER(l1, l2)
INTER(l1, app(l2, l3)) → INTER(l1, l3)
INTER(cons(x, l1), l2) → IFINTER(mem(x, l2), x, l1, l2)
IFINTER(true, x, l1, l2) → INTER(l1, l2)
INTER(l1, cons(x, l2)) → IFINTER(mem(x, l1), x, l2, l1)
IFINTER(false, x, l1, l2) → INTER(l1, l2)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(0(x), 1(y)) → -1(-(x, y), 1(#))
-1(0(x), 1(y)) → -1(x, y)
-1(0(x), 0(y)) → -1(x, y)
-1(1(x), 0(y)) → -1(x, y)
-1(1(x), 1(y)) → -1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


-1(0(x), 1(y)) → -1(x, y)
-1(1(x), 1(y)) → -1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
-1(x1, x2)  =  -1(x2)
0(x1)  =  x1
1(x1)  =  1(x1)
-(x1, x2)  =  x2
#  =  #

Lexicographic path order with status [LPO].
Quasi-Precedence:
-^11 > 11 > #

Status:
11: [1]
-^11: [1]
#: []


The following usable rules [FROCOS05] were oriented: none

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(0(x), 1(y)) → -1(-(x, y), 1(#))
-1(0(x), 0(y)) → -1(x, y)
-1(1(x), 0(y)) → -1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(43) Complex Obligation (AND)

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(0(x), 1(y)) → -1(-(x, y), 1(#))

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


-1(0(x), 1(y)) → -1(-(x, y), 1(#))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
-1(x1, x2)  =  -1(x1)
0(x1)  =  0(x1)
1(x1)  =  1(x1)
-(x1, x2)  =  x1
#  =  #

Lexicographic path order with status [LPO].
Quasi-Precedence:
-^11 > # > [01, 11]

Status:
11: [1]
-^11: [1]
01: [1]
#: []


The following usable rules [FROCOS05] were oriented:

-(1(x), 1(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
0(#) → #
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(x, #) → x

(46) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(48) TRUE

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(1(x), 0(y)) → -1(x, y)
-1(0(x), 0(y)) → -1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


-1(1(x), 0(y)) → -1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
-1(x1, x2)  =  -1(x1, x2)
1(x1)  =  1(x1)
0(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[-^12, 11]

Status:
11: [1]
-^12: [2,1]


The following usable rules [FROCOS05] were oriented: none

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(0(x), 0(y)) → -1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


-1(0(x), 0(y)) → -1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
-1(x1, x2)  =  -1(x2)
0(x1)  =  0(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
-^11: [1]
01: [1]


The following usable rules [FROCOS05] were oriented: none

(53) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(55) TRUE

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(0(x), 1(y)) → +1(x, y)
+1(0(x), 0(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
+1(1(x), 1(y)) → +1(x, y)
+1(+(x, y), z) → +1(x, +(y, z))
+1(+(x, y), z) → +1(y, z)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(app(l1, l2)) → SUM(l1)
SUM(cons(x, l)) → SUM(l)
SUM(app(l1, l2)) → SUM(l2)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SUM(app(l1, l2)) → SUM(l1)
SUM(app(l1, l2)) → SUM(l2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SUM(x1)  =  SUM(x1)
app(x1, x2)  =  app(x1, x2)
cons(x1, x2)  =  x2

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
SUM1: [1]
app2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(59) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(cons(x, l)) → SUM(l)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SUM(cons(x, l)) → SUM(l)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SUM(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
cons2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(61) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(63) TRUE

(64) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(1(x), y) → *1(x, y)
*1(0(x), y) → *1(x, y)
*1(*(x, y), z) → *1(x, *(y, z))
*1(*(x, y), z) → *1(y, z)
*1(x, +(y, z)) → *1(x, y)
*1(x, +(y, z)) → *1(x, z)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


*1(*(x, y), z) → *1(x, *(y, z))
*1(*(x, y), z) → *1(y, z)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
*1(x1, x2)  =  *1(x1)
1(x1)  =  x1
0(x1)  =  x1
*(x1, x2)  =  *(x1, x2)
+(x1, x2)  =  +(x1)
#  =  #

Lexicographic path order with status [LPO].
Quasi-Precedence:
*^11 > [*2, +1] > #

Status:
*^11: [1]
*2: [2,1]
+1: [1]
#: []


The following usable rules [FROCOS05] were oriented: none

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(1(x), y) → *1(x, y)
*1(0(x), y) → *1(x, y)
*1(x, +(y, z)) → *1(x, y)
*1(x, +(y, z)) → *1(x, z)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


*1(x, +(y, z)) → *1(x, y)
*1(x, +(y, z)) → *1(x, z)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
*1(x1, x2)  =  *1(x2)
1(x1)  =  1
0(x1)  =  x1
+(x1, x2)  =  +(x1, x2)

Lexicographic path order with status [LPO].
Quasi-Precedence:
1 > *^11

Status:
*^11: [1]
1: []
+2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(1(x), y) → *1(x, y)
*1(0(x), y) → *1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


*1(1(x), y) → *1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
*1(x1, x2)  =  *1(x1, x2)
1(x1)  =  1(x1)
0(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[*^12, 11]

Status:
11: [1]
*^12: [2,1]


The following usable rules [FROCOS05] were oriented: none

(70) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(0(x), y) → *1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


*1(0(x), y) → *1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[*^12, 01]

Status:
*^12: [2,1]
01: [1]


The following usable rules [FROCOS05] were oriented: none

(72) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(73) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(74) TRUE

(75) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROD(app(l1, l2)) → PROD(l1)
PROD(cons(x, l)) → PROD(l)
PROD(app(l1, l2)) → PROD(l2)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(76) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROD(app(l1, l2)) → PROD(l1)
PROD(app(l1, l2)) → PROD(l2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROD(x1)  =  PROD(x1)
app(x1, x2)  =  app(x1, x2)
cons(x1, x2)  =  x2

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
PROD1: [1]
app2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(77) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROD(cons(x, l)) → PROD(l)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROD(cons(x, l)) → PROD(l)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROD(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
cons2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(79) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(80) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(81) TRUE

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOG'(0(x)) → LOG'(x)
LOG'(1(x)) → LOG'(x)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(83) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LOG'(0(x)) → LOG'(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LOG'(x1)  =  x1
0(x1)  =  0(x1)
1(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
01: [1]


The following usable rules [FROCOS05] were oriented: none

(84) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOG'(1(x)) → LOG'(x)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(85) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LOG'(1(x)) → LOG'(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LOG'(x1)  =  x1
1(x1)  =  1(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
11: [1]


The following usable rules [FROCOS05] were oriented: none

(86) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(87) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(88) TRUE