(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(0(x), 0(y)) → 01(+(x, y))
+1(0(x), 0(y)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → 01(+(+(x, y), 1(#)))
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
+1(1(x), 1(y)) → +1(x, y)
+1(+(x, y), z) → +1(x, +(y, z))
+1(+(x, y), z) → +1(y, z)
-1(0(x), 0(y)) → 01(-(x, y))
-1(0(x), 0(y)) → -1(x, y)
-1(0(x), 1(y)) → -1(-(x, y), 1(#))
-1(0(x), 1(y)) → -1(x, y)
-1(1(x), 0(y)) → -1(x, y)
-1(1(x), 1(y)) → 01(-(x, y))
-1(1(x), 1(y)) → -1(x, y)
EQ(#, 0(y)) → EQ(#, y)
EQ(0(x), #) → EQ(x, #)
EQ(1(x), 1(y)) → EQ(x, y)
EQ(0(x), 0(y)) → EQ(x, y)
GE(0(x), 0(y)) → GE(x, y)
GE(0(x), 1(y)) → NOT(ge(y, x))
GE(0(x), 1(y)) → GE(y, x)
GE(1(x), 0(y)) → GE(x, y)
GE(1(x), 1(y)) → GE(x, y)
GE(#, 0(x)) → GE(#, x)
LOG(x) → -1(log'(x), 1(#))
LOG(x) → LOG'(x)
LOG'(1(x)) → +1(log'(x), 1(#))
LOG'(1(x)) → LOG'(x)
LOG'(0(x)) → IF(ge(x, 1(#)), +(log'(x), 1(#)), #)
LOG'(0(x)) → GE(x, 1(#))
LOG'(0(x)) → +1(log'(x), 1(#))
LOG'(0(x)) → LOG'(x)
*1(0(x), y) → 01(*(x, y))
*1(0(x), y) → *1(x, y)
*1(1(x), y) → +1(0(*(x, y)), y)
*1(1(x), y) → 01(*(x, y))
*1(1(x), y) → *1(x, y)
*1(*(x, y), z) → *1(x, *(y, z))
*1(*(x, y), z) → *1(y, z)
*1(x, +(y, z)) → +1(*(x, y), *(x, z))
*1(x, +(y, z)) → *1(x, y)
*1(x, +(y, z)) → *1(x, z)
APP(cons(x, l1), l2) → APP(l1, l2)
SUM(nil) → 01(#)
SUM(cons(x, l)) → +1(x, sum(l))
SUM(cons(x, l)) → SUM(l)
SUM(app(l1, l2)) → +1(sum(l1), sum(l2))
SUM(app(l1, l2)) → SUM(l1)
SUM(app(l1, l2)) → SUM(l2)
PROD(cons(x, l)) → *1(x, prod(l))
PROD(cons(x, l)) → PROD(l)
PROD(app(l1, l2)) → *1(prod(l1), prod(l2))
PROD(app(l1, l2)) → PROD(l1)
PROD(app(l1, l2)) → PROD(l2)
MEM(x, cons(y, l)) → IF(eq(x, y), true, mem(x, l))
MEM(x, cons(y, l)) → EQ(x, y)
MEM(x, cons(y, l)) → MEM(x, l)
INTER(app(l1, l2), l3) → APP(inter(l1, l3), inter(l2, l3))
INTER(app(l1, l2), l3) → INTER(l1, l3)
INTER(app(l1, l2), l3) → INTER(l2, l3)
INTER(l1, app(l2, l3)) → APP(inter(l1, l2), inter(l1, l3))
INTER(l1, app(l2, l3)) → INTER(l1, l2)
INTER(l1, app(l2, l3)) → INTER(l1, l3)
INTER(cons(x, l1), l2) → IFINTER(mem(x, l2), x, l1, l2)
INTER(cons(x, l1), l2) → MEM(x, l2)
INTER(l1, cons(x, l2)) → IFINTER(mem(x, l1), x, l2, l1)
INTER(l1, cons(x, l2)) → MEM(x, l1)
IFINTER(true, x, l1, l2) → INTER(l1, l2)
IFINTER(false, x, l1, l2) → INTER(l1, l2)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 14 SCCs with 26 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(cons(x, l1), l2) → APP(l1, l2)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(cons(x, l1), l2) → APP(l1, l2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  x1
cons(x1, x2)  =  cons(x2)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GE(#, 0(x)) → GE(#, x)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


GE(#, 0(x)) → GE(#, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
GE(x1, x2)  =  x2
0(x1)  =  0(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GE(0(x), 1(y)) → GE(y, x)
GE(0(x), 0(y)) → GE(x, y)
GE(1(x), 0(y)) → GE(x, y)
GE(1(x), 1(y)) → GE(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


GE(0(x), 1(y)) → GE(y, x)
GE(1(x), 0(y)) → GE(x, y)
GE(1(x), 1(y)) → GE(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
GE(x1, x2)  =  GE(x1, x2)
0(x1)  =  x1
1(x1)  =  1(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
GE2: multiset


The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GE(0(x), 0(y)) → GE(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


GE(0(x), 0(y)) → GE(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
GE(x1, x2)  =  x2
0(x1)  =  0(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(0(x), #) → EQ(x, #)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EQ(0(x), #) → EQ(x, #)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
EQ(x1, x2)  =  x1
0(x1)  =  0(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(24) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(26) TRUE

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(#, 0(y)) → EQ(#, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EQ(#, 0(y)) → EQ(#, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
EQ(x1, x2)  =  x2
0(x1)  =  0(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(29) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(31) TRUE

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(0(x), 0(y)) → EQ(x, y)
EQ(1(x), 1(y)) → EQ(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EQ(1(x), 1(y)) → EQ(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
EQ(x1, x2)  =  x2
0(x1)  =  x1
1(x1)  =  1(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(0(x), 0(y)) → EQ(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EQ(0(x), 0(y)) → EQ(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
EQ(x1, x2)  =  x2
0(x1)  =  0(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(36) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(38) TRUE

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MEM(x, cons(y, l)) → MEM(x, l)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MEM(x, cons(y, l)) → MEM(x, l)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MEM(x1, x2)  =  x2
cons(x1, x2)  =  cons(x2)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(41) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(43) TRUE

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INTER(app(l1, l2), l3) → INTER(l2, l3)
INTER(app(l1, l2), l3) → INTER(l1, l3)
INTER(l1, app(l2, l3)) → INTER(l1, l2)
INTER(l1, app(l2, l3)) → INTER(l1, l3)
INTER(cons(x, l1), l2) → IFINTER(mem(x, l2), x, l1, l2)
IFINTER(true, x, l1, l2) → INTER(l1, l2)
INTER(l1, cons(x, l2)) → IFINTER(mem(x, l1), x, l2, l1)
IFINTER(false, x, l1, l2) → INTER(l1, l2)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INTER(app(l1, l2), l3) → INTER(l2, l3)
INTER(app(l1, l2), l3) → INTER(l1, l3)
INTER(l1, app(l2, l3)) → INTER(l1, l2)
INTER(l1, app(l2, l3)) → INTER(l1, l3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
INTER(x1, x2)  =  INTER(x1, x2)
app(x1, x2)  =  app(x1, x2)
cons(x1, x2)  =  x2
IFINTER(x1, x2, x3, x4)  =  IFINTER(x3, x4)

Recursive path order with status [RPO].
Quasi-Precedence:
[INTER2, IFINTER2]

Status:
IFINTER2: multiset
INTER2: multiset


The following usable rules [FROCOS05] were oriented: none

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INTER(cons(x, l1), l2) → IFINTER(mem(x, l2), x, l1, l2)
IFINTER(true, x, l1, l2) → INTER(l1, l2)
INTER(l1, cons(x, l2)) → IFINTER(mem(x, l1), x, l2, l1)
IFINTER(false, x, l1, l2) → INTER(l1, l2)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INTER(cons(x, l1), l2) → IFINTER(mem(x, l2), x, l1, l2)
INTER(l1, cons(x, l2)) → IFINTER(mem(x, l1), x, l2, l1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
INTER(x1, x2)  =  INTER(x1, x2)
cons(x1, x2)  =  cons(x2)
IFINTER(x1, x2, x3, x4)  =  IFINTER(x3, x4)

Recursive path order with status [RPO].
Quasi-Precedence:
[INTER2, IFINTER2]

Status:
IFINTER2: multiset
INTER2: multiset


The following usable rules [FROCOS05] were oriented: none

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IFINTER(true, x, l1, l2) → INTER(l1, l2)
IFINTER(false, x, l1, l2) → INTER(l1, l2)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(50) TRUE

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(0(x), 1(y)) → -1(-(x, y), 1(#))
-1(0(x), 1(y)) → -1(x, y)
-1(0(x), 0(y)) → -1(x, y)
-1(1(x), 0(y)) → -1(x, y)
-1(1(x), 1(y)) → -1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


-1(0(x), 0(y)) → -1(x, y)
-1(1(x), 0(y)) → -1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
-1(x1, x2)  =  x2
1(x1)  =  x1
#  =  #
0(x1)  =  0(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
01 > #

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(0(x), 1(y)) → -1(-(x, y), 1(#))
-1(0(x), 1(y)) → -1(x, y)
-1(1(x), 1(y)) → -1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


-1(0(x), 1(y)) → -1(x, y)
-1(1(x), 1(y)) → -1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
-1(x1, x2)  =  x2
1(x1)  =  1(x1)
#  =  #

Recursive path order with status [RPO].
Quasi-Precedence:
11 > #

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

-1(0(x), 1(y)) → -1(-(x, y), 1(#))

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


-1(0(x), 1(y)) → -1(-(x, y), 1(#))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
-1(x1, x2)  =  x1
0(x1)  =  0(x1)
-(x1, x2)  =  x1
#  =  #
1(x1)  =  1(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[01, 11]

Status:
trivial


The following usable rules [FROCOS05] were oriented:

-(x, #) → x
-(#, x) → #
-(1(x), 1(y)) → 0(-(x, y))
0(#) → #
-(1(x), 0(y)) → 1(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(0(x), 0(y)) → 0(-(x, y))

(57) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(59) TRUE

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(0(x), 1(y)) → +1(x, y)
+1(0(x), 0(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
+1(1(x), 1(y)) → +1(x, y)
+1(+(x, y), z) → +1(x, +(y, z))
+1(+(x, y), z) → +1(y, z)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(app(l1, l2)) → SUM(l1)
SUM(cons(x, l)) → SUM(l)
SUM(app(l1, l2)) → SUM(l2)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SUM(app(l1, l2)) → SUM(l1)
SUM(app(l1, l2)) → SUM(l2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SUM(x1)  =  x1
app(x1, x2)  =  app(x1, x2)
cons(x1, x2)  =  x2

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(cons(x, l)) → SUM(l)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SUM(cons(x, l)) → SUM(l)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SUM(x1)  =  x1
cons(x1, x2)  =  cons(x2)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(65) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(67) TRUE

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(1(x), y) → *1(x, y)
*1(0(x), y) → *1(x, y)
*1(*(x, y), z) → *1(x, *(y, z))
*1(*(x, y), z) → *1(y, z)
*1(x, +(y, z)) → *1(x, y)
*1(x, +(y, z)) → *1(x, z)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


*1(*(x, y), z) → *1(x, *(y, z))
*1(*(x, y), z) → *1(y, z)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
*1(x1, x2)  =  x1
1(x1)  =  x1
0(x1)  =  x1
*(x1, x2)  =  *(x1, x2)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(70) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(1(x), y) → *1(x, y)
*1(0(x), y) → *1(x, y)
*1(x, +(y, z)) → *1(x, y)
*1(x, +(y, z)) → *1(x, z)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


*1(x, +(y, z)) → *1(x, y)
*1(x, +(y, z)) → *1(x, z)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
*1(x1, x2)  =  x2
+(x1, x2)  =  +(x1, x2)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(1(x), y) → *1(x, y)
*1(0(x), y) → *1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(73) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


*1(0(x), y) → *1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
*1(x1, x2)  =  x1
1(x1)  =  x1
0(x1)  =  0(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(74) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(1(x), y) → *1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


*1(1(x), y) → *1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
*1(x1, x2)  =  x1
1(x1)  =  1(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(76) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(77) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(78) TRUE

(79) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROD(app(l1, l2)) → PROD(l1)
PROD(cons(x, l)) → PROD(l)
PROD(app(l1, l2)) → PROD(l2)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(80) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROD(app(l1, l2)) → PROD(l1)
PROD(app(l1, l2)) → PROD(l2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROD(x1)  =  x1
app(x1, x2)  =  app(x1, x2)
cons(x1, x2)  =  x2

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(81) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROD(cons(x, l)) → PROD(l)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(82) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROD(cons(x, l)) → PROD(l)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROD(x1)  =  x1
cons(x1, x2)  =  cons(x2)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(83) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(85) TRUE

(86) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOG'(0(x)) → LOG'(x)
LOG'(1(x)) → LOG'(x)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(87) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LOG'(1(x)) → LOG'(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LOG'(x1)  =  x1
0(x1)  =  x1
1(x1)  =  1(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(88) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOG'(0(x)) → LOG'(x)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(89) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LOG'(0(x)) → LOG'(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LOG'(x1)  =  x1
0(x1)  =  0(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented: none

(90) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
eq(#, #) → true
eq(#, 1(y)) → false
eq(1(x), #) → false
eq(#, 0(y)) → eq(#, y)
eq(0(x), #) → eq(x, #)
eq(1(x), 1(y)) → eq(x, y)
eq(0(x), 1(y)) → false
eq(1(x), 0(y)) → false
eq(0(x), 0(y)) → eq(x, y)
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
mem(x, nil) → false
mem(x, cons(y, l)) → if(eq(x, y), true, mem(x, l))
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(91) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(92) TRUE