(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__natscons(0, incr(nats))
a__pairscons(0, incr(odds))
a__oddsa__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__head(cons(X, XS)) → mark(X)
a__tail(cons(X, XS)) → mark(XS)
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__natsnats
a__pairspairs
a__oddsodds
a__incr(X) → incr(X)
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(a__head(x1)) = 1 + x1   
POL(a__incr(x1)) = x1   
POL(a__nats) = 0   
POL(a__odds) = 0   
POL(a__pairs) = 0   
POL(a__tail(x1)) = 1 + x1   
POL(cons(x1, x2)) = x1 + x2   
POL(head(x1)) = 1 + x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(nil) = 0   
POL(odds) = 0   
POL(pairs) = 0   
POL(s(x1)) = x1   
POL(tail(x1)) = 1 + x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

a__head(cons(X, XS)) → mark(X)
a__tail(cons(X, XS)) → mark(XS)


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__natscons(0, incr(nats))
a__pairscons(0, incr(odds))
a__oddsa__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__natsnats
a__pairspairs
a__oddsodds
a__incr(X) → incr(X)
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.

(3) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(a__head(x1)) = 2 + x1   
POL(a__incr(x1)) = 2·x1   
POL(a__nats) = 0   
POL(a__odds) = 0   
POL(a__pairs) = 0   
POL(a__tail(x1)) = 2 + 2·x1   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(head(x1)) = 2 + x1   
POL(incr(x1)) = 2·x1   
POL(mark(x1)) = 2·x1   
POL(nats) = 0   
POL(nil) = 2   
POL(odds) = 0   
POL(pairs) = 0   
POL(s(x1)) = x1   
POL(tail(x1)) = 1 + 2·x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

mark(head(X)) → a__head(mark(X))
mark(nil) → nil
a__tail(X) → tail(X)


(4) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__natscons(0, incr(nats))
a__pairscons(0, incr(odds))
a__oddsa__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__natsnats
a__pairspairs
a__oddsodds
a__incr(X) → incr(X)
a__head(X) → head(X)

Q is empty.

(5) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(a__head(x1)) = 2 + 2·x1   
POL(a__incr(x1)) = 2·x1   
POL(a__nats) = 0   
POL(a__odds) = 0   
POL(a__pairs) = 0   
POL(a__tail(x1)) = 1 + 2·x1   
POL(cons(x1, x2)) = x1 + x2   
POL(head(x1)) = 1 + x1   
POL(incr(x1)) = 2·x1   
POL(mark(x1)) = 2·x1   
POL(nats) = 0   
POL(odds) = 0   
POL(pairs) = 0   
POL(s(x1)) = x1   
POL(tail(x1)) = 2 + 2·x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

mark(tail(X)) → a__tail(mark(X))
a__head(X) → head(X)


(6) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__natscons(0, incr(nats))
a__pairscons(0, incr(odds))
a__oddsa__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__natsnats
a__pairspairs
a__oddsodds
a__incr(X) → incr(X)

Q is empty.

(7) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(a__incr(x1)) = 2·x1   
POL(a__nats) = 2   
POL(a__odds) = 0   
POL(a__pairs) = 0   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(incr(x1)) = 2·x1   
POL(mark(x1)) = 2·x1   
POL(nats) = 1   
POL(odds) = 0   
POL(pairs) = 0   
POL(s(x1)) = x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

a__natsnats


(8) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__natscons(0, incr(nats))
a__pairscons(0, incr(odds))
a__oddsa__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__pairspairs
a__oddsodds
a__incr(X) → incr(X)

Q is empty.

(9) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ODDSA__INCR(a__pairs)
A__ODDSA__PAIRS
A__INCR(cons(X, XS)) → MARK(X)
MARK(nats) → A__NATS
MARK(pairs) → A__PAIRS
MARK(odds) → A__ODDS
MARK(incr(X)) → A__INCR(mark(X))
MARK(incr(X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__natscons(0, incr(nats))
a__pairscons(0, incr(odds))
a__oddsa__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__pairspairs
a__oddsodds
a__incr(X) → incr(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__INCR(cons(X, XS)) → MARK(X)
MARK(odds) → A__ODDS
A__ODDSA__INCR(a__pairs)
MARK(incr(X)) → A__INCR(mark(X))
MARK(incr(X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__natscons(0, incr(nats))
a__pairscons(0, incr(odds))
a__oddsa__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__pairspairs
a__oddsodds
a__incr(X) → incr(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

A__ODDSA__INCR(a__pairs)


Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(A__INCR(x1)) = x1   
POL(A__ODDS) = 2   
POL(MARK(x1)) = 2·x1   
POL(a__incr(x1)) = x1   
POL(a__nats) = 0   
POL(a__odds) = 1   
POL(a__pairs) = 1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(odds) = 1   
POL(pairs) = 1   
POL(s(x1)) = x1   

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__INCR(cons(X, XS)) → MARK(X)
MARK(odds) → A__ODDS
MARK(incr(X)) → A__INCR(mark(X))
MARK(incr(X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__natscons(0, incr(nats))
a__pairscons(0, incr(odds))
a__oddsa__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__pairspairs
a__oddsodds
a__incr(X) → incr(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(incr(X)) → A__INCR(mark(X))
A__INCR(cons(X, XS)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__natscons(0, incr(nats))
a__pairscons(0, incr(odds))
a__oddsa__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__pairspairs
a__oddsodds
a__incr(X) → incr(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(MARK(x1)) =
/0\
\0/
+
/10\
\00/
·x1

POL(incr(x1)) =
/0\
\1/
+
/11\
\11/
·x1

POL(A__INCR(x1)) =
/0\
\0/
+
/01\
\00/
·x1

POL(mark(x1)) =
/0\
\0/
+
/11\
\11/
·x1

POL(cons(x1, x2)) =
/0\
\0/
+
/11\
\11/
·x1 +
/00\
\00/
·x2

POL(s(x1)) =
/1\
\0/
+
/10\
\01/
·x1

POL(a__incr(x1)) =
/1\
\1/
+
/11\
\11/
·x1

POL(a__odds) =
/1\
\1/

POL(odds) =
/1\
\1/

POL(a__pairs) =
/0\
\0/

POL(pairs) =
/0\
\0/

POL(0) =
/0\
\0/

POL(a__nats) =
/0\
\0/

POL(nats) =
/0\
\0/

The following usable rules [FROCOS05] were oriented:

a__incr(X) → incr(X)
a__oddsodds
a__pairspairs
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(pairs) → a__pairs
a__pairscons(0, incr(odds))
a__natscons(0, incr(nats))
mark(nats) → a__nats
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__oddsa__incr(a__pairs)
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(incr(X)) → a__incr(mark(X))
mark(odds) → a__odds

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(incr(X)) → A__INCR(mark(X))
A__INCR(cons(X, XS)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__natscons(0, incr(nats))
a__pairscons(0, incr(odds))
a__oddsa__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__pairspairs
a__oddsodds
a__incr(X) → incr(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(MARK(x1)) =
/0\
\0/
+
/10\
\00/
·x1

POL(incr(x1)) =
/0\
\0/
+
/10\
\00/
·x1

POL(A__INCR(x1)) =
/0\
\0/
+
/01\
\00/
·x1

POL(mark(x1)) =
/0\
\0/
+
/10\
\10/
·x1

POL(cons(x1, x2)) =
/1\
\0/
+
/10\
\10/
·x1 +
/00\
\00/
·x2

POL(a__incr(x1)) =
/0\
\0/
+
/10\
\01/
·x1

POL(a__odds) =
/1\
\0/

POL(odds) =
/1\
\0/

POL(a__pairs) =
/1\
\0/

POL(pairs) =
/1\
\0/

POL(0) =
/0\
\0/

POL(a__nats) =
/1\
\0/

POL(nats) =
/1\
\0/

POL(s(x1)) =
/0\
\0/
+
/10\
\00/
·x1

The following usable rules [FROCOS05] were oriented:

a__incr(X) → incr(X)
a__oddsodds
a__pairspairs
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(pairs) → a__pairs
a__pairscons(0, incr(odds))
a__natscons(0, incr(nats))
mark(nats) → a__nats
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__oddsa__incr(a__pairs)
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(incr(X)) → a__incr(mark(X))
mark(odds) → a__odds

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(incr(X)) → A__INCR(mark(X))
A__INCR(cons(X, XS)) → MARK(X)
MARK(incr(X)) → MARK(X)

The TRS R consists of the following rules:

a__natscons(0, incr(nats))
a__pairscons(0, incr(odds))
a__oddsa__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__pairspairs
a__oddsodds
a__incr(X) → incr(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__INCR(cons(X, XS)) → MARK(X)
MARK(incr(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(MARK(x1)) =
/0\
\0/
+
/11\
\00/
·x1

POL(incr(x1)) =
/0\
\1/
+
/10\
\01/
·x1

POL(A__INCR(x1)) =
/1\
\0/
+
/10\
\00/
·x1

POL(mark(x1)) =
/0\
\0/
+
/10\
\01/
·x1

POL(cons(x1, x2)) =
/0\
\0/
+
/11\
\00/
·x1 +
/00\
\00/
·x2

POL(a__incr(x1)) =
/0\
\1/
+
/10\
\01/
·x1

POL(a__odds) =
/0\
\1/

POL(odds) =
/0\
\1/

POL(a__pairs) =
/0\
\0/

POL(pairs) =
/0\
\0/

POL(0) =
/0\
\0/

POL(a__nats) =
/0\
\0/

POL(nats) =
/1\
\1/

POL(s(x1)) =
/0\
\0/
+
/11\
\00/
·x1

The following usable rules [FROCOS05] were oriented:

a__incr(X) → incr(X)
a__oddsodds
a__pairspairs
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(pairs) → a__pairs
a__pairscons(0, incr(odds))
a__natscons(0, incr(nats))
mark(nats) → a__nats
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__oddsa__incr(a__pairs)
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(incr(X)) → a__incr(mark(X))
mark(odds) → a__odds

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(incr(X)) → A__INCR(mark(X))

The TRS R consists of the following rules:

a__natscons(0, incr(nats))
a__pairscons(0, incr(odds))
a__oddsa__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__pairspairs
a__oddsodds
a__incr(X) → incr(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(24) TRUE