0 QTRS
↳1 AAECC Innermost (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
cond(true, x, y) → cond(and(gr(x, 0), gr(y, 0)), p(x), p(y))
and(true, true) → true
and(x, false) → false
and(false, x) → false
gr(0, 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
and(true, true) → true
and(x, false) → false
and(false, x) → false
gr(0, 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond(true, x, y) → cond(and(gr(x, 0), gr(y, 0)), p(x), p(y))
cond(true, x, y) → cond(and(gr(x, 0), gr(y, 0)), p(x), p(y))
and(true, true) → true
and(x, false) → false
and(false, x) → false
gr(0, 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond(true, x0, x1)
and(true, true)
and(x0, false)
and(false, x0)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
COND(true, x, y) → COND(and(gr(x, 0), gr(y, 0)), p(x), p(y))
COND(true, x, y) → AND(gr(x, 0), gr(y, 0))
COND(true, x, y) → GR(x, 0)
COND(true, x, y) → GR(y, 0)
COND(true, x, y) → P(x)
COND(true, x, y) → P(y)
GR(s(x), s(y)) → GR(x, y)
cond(true, x, y) → cond(and(gr(x, 0), gr(y, 0)), p(x), p(y))
and(true, true) → true
and(x, false) → false
and(false, x) → false
gr(0, 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond(true, x0, x1)
and(true, true)
and(x0, false)
and(false, x0)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
GR(s(x), s(y)) → GR(x, y)
cond(true, x, y) → cond(and(gr(x, 0), gr(y, 0)), p(x), p(y))
and(true, true) → true
and(x, false) → false
and(false, x) → false
gr(0, 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond(true, x0, x1)
and(true, true)
and(x0, false)
and(false, x0)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
GR(s(x), s(y)) → GR(x, y)
[s1, true] > cond1 > [0, false]
[s1, true] > and1 > [0, false]
cond(true, x, y) → cond(and(gr(x, 0), gr(y, 0)), p(x), p(y))
and(true, true) → true
and(x, false) → false
and(false, x) → false
gr(0, 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond(true, x, y) → cond(and(gr(x, 0), gr(y, 0)), p(x), p(y))
and(true, true) → true
and(x, false) → false
and(false, x) → false
gr(0, 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond(true, x0, x1)
and(true, true)
and(x0, false)
and(false, x0)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
COND(true, x, y) → COND(and(gr(x, 0), gr(y, 0)), p(x), p(y))
cond(true, x, y) → cond(and(gr(x, 0), gr(y, 0)), p(x), p(y))
and(true, true) → true
and(x, false) → false
and(false, x) → false
gr(0, 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond(true, x0, x1)
and(true, true)
and(x0, false)
and(false, x0)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))