(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

cond(true, x, y) → cond(gr(x, y), y, x)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

Q is empty.

(1) AAECC Innermost (EQUIVALENT transformation)

We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

The TRS R 2 is

cond(true, x, y) → cond(gr(x, y), y, x)

The signature Sigma is {cond}

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

cond(true, x, y) → cond(gr(x, y), y, x)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

The set Q consists of the following terms:

cond(true, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

COND(true, x, y) → COND(gr(x, y), y, x)
COND(true, x, y) → GR(x, y)
GR(s(x), s(y)) → GR(x, y)

The TRS R consists of the following rules:

cond(true, x, y) → cond(gr(x, y), y, x)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

The set Q consists of the following terms:

cond(true, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GR(s(x), s(y)) → GR(x, y)

The TRS R consists of the following rules:

cond(true, x, y) → cond(gr(x, y), y, x)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

The set Q consists of the following terms:

cond(true, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


GR(s(x), s(y)) → GR(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
GR(x1, x2)  =  GR(x1)
s(x1)  =  s(x1)
cond(x1, x2, x3)  =  cond
true  =  true
gr(x1, x2)  =  x1
0  =  0
false  =  false

Recursive Path Order [RPO].
Precedence:
s1 > GR1
s1 > true
0 > true
0 > false

The following usable rules [FROCOS05] were oriented:

cond(true, x, y) → cond(gr(x, y), y, x)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

cond(true, x, y) → cond(gr(x, y), y, x)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

The set Q consists of the following terms:

cond(true, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

COND(true, x, y) → COND(gr(x, y), y, x)

The TRS R consists of the following rules:

cond(true, x, y) → cond(gr(x, y), y, x)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

The set Q consists of the following terms:

cond(true, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.