(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

Q is empty.

(1) AAECC Innermost (EQUIVALENT transformation)

We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The TRS R 2 is

cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)

The signature Sigma is {cond1, cond2}

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND1(true, x, y, z) → GR(y, z)
COND2(true, x, y, z) → COND2(gr(y, z), x, p(y), z)
COND2(true, x, y, z) → GR(y, z)
COND2(true, x, y, z) → P(y)
COND2(false, x, y, z) → COND1(gr(x, z), p(x), y, z)
COND2(false, x, y, z) → GR(x, z)
COND2(false, x, y, z) → P(x)
GR(s(x), s(y)) → GR(x, y)

The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 5 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GR(s(x), s(y)) → GR(x, y)

The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


GR(s(x), s(y)) → GR(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[GR2, s1]

Status:
GR2: [1,2]
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

COND2(true, x, y, z) → COND2(gr(y, z), x, p(y), z)
COND2(false, x, y, z) → COND1(gr(x, z), p(x), y, z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)

The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.