(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(neq(x, 0), y, y)
cond2(false, x, y) → cond1(neq(x, 0), p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

Q is empty.

(1) AAECC Innermost (EQUIVALENT transformation)

We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

The TRS R 2 is

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(neq(x, 0), y, y)
cond2(false, x, y) → cond1(neq(x, 0), p(x), y)

The signature Sigma is {cond1, cond2}

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(neq(x, 0), y, y)
cond2(false, x, y) → cond1(neq(x, 0), p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

COND1(true, x, y) → COND2(gr(x, y), x, y)
COND1(true, x, y) → GR(x, y)
COND2(true, x, y) → COND1(neq(x, 0), y, y)
COND2(true, x, y) → NEQ(x, 0)
COND2(false, x, y) → COND1(neq(x, 0), p(x), y)
COND2(false, x, y) → NEQ(x, 0)
COND2(false, x, y) → P(x)
GR(s(x), s(y)) → GR(x, y)
NEQ(s(x), s(y)) → NEQ(x, y)

The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(neq(x, 0), y, y)
cond2(false, x, y) → cond1(neq(x, 0), p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 4 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NEQ(s(x), s(y)) → NEQ(x, y)

The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(neq(x, 0), y, y)
cond2(false, x, y) → cond1(neq(x, 0), p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NEQ(s(x), s(y)) → NEQ(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NEQ(x1, x2)  =  x2
s(x1)  =  s(x1)
cond1(x1, x2, x3)  =  cond1
true  =  true
cond2(x1, x2, x3)  =  x1
gr(x1, x2)  =  gr
neq(x1, x2)  =  neq(x2)
0  =  0
false  =  false
p(x1)  =  p(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
s1 > [cond1, true, gr, neq1, 0, false]
p1 > [cond1, true, gr, neq1, 0, false]

Status:
s1: [1]
cond1: []
true: []
gr: []
neq1: [1]
0: []
false: []
p1: [1]


The following usable rules [FROCOS05] were oriented:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(neq(x, 0), y, y)
cond2(false, x, y) → cond1(neq(x, 0), p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(neq(x, 0), y, y)
cond2(false, x, y) → cond1(neq(x, 0), p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GR(s(x), s(y)) → GR(x, y)

The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(neq(x, 0), y, y)
cond2(false, x, y) → cond1(neq(x, 0), p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


GR(s(x), s(y)) → GR(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
GR(x1, x2)  =  x2
s(x1)  =  s(x1)
cond1(x1, x2, x3)  =  cond1
true  =  true
cond2(x1, x2, x3)  =  x1
gr(x1, x2)  =  gr
neq(x1, x2)  =  neq(x2)
0  =  0
false  =  false
p(x1)  =  p(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
s1 > [cond1, true, gr, neq1, 0, false]
p1 > [cond1, true, gr, neq1, 0, false]

Status:
s1: [1]
cond1: []
true: []
gr: []
neq1: [1]
0: []
false: []
p1: [1]


The following usable rules [FROCOS05] were oriented:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(neq(x, 0), y, y)
cond2(false, x, y) → cond1(neq(x, 0), p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(neq(x, 0), y, y)
cond2(false, x, y) → cond1(neq(x, 0), p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

COND2(true, x, y) → COND1(neq(x, 0), y, y)
COND1(true, x, y) → COND2(gr(x, y), x, y)
COND2(false, x, y) → COND1(neq(x, 0), p(x), y)

The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(neq(x, 0), y, y)
cond2(false, x, y) → cond1(neq(x, 0), p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.