(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS_ACTIVE(s(x), s(y)) → MINUS_ACTIVE(x, y)
MARK(s(x)) → MARK(x)
MARK(minus(x, y)) → MINUS_ACTIVE(x, y)
MARK(ge(x, y)) → GE_ACTIVE(x, y)
GE_ACTIVE(s(x), s(y)) → GE_ACTIVE(x, y)
MARK(div(x, y)) → DIV_ACTIVE(mark(x), y)
MARK(div(x, y)) → MARK(x)
MARK(if(x, y, z)) → IF_ACTIVE(mark(x), y, z)
MARK(if(x, y, z)) → MARK(x)
DIV_ACTIVE(s(x), s(y)) → IF_ACTIVE(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
DIV_ACTIVE(s(x), s(y)) → GE_ACTIVE(x, y)
IF_ACTIVE(true, x, y) → MARK(x)
IF_ACTIVE(false, x, y) → MARK(y)

The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GE_ACTIVE(s(x), s(y)) → GE_ACTIVE(x, y)

The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


GE_ACTIVE(s(x), s(y)) → GE_ACTIVE(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
GE_ACTIVE(x1, x2)  =  GE_ACTIVE(x1, x2)
s(x1)  =  s(x1)
minus_active(x1, x2)  =  minus_active
0  =  0
mark(x1)  =  x1
ge_active(x1, x2)  =  x2
true  =  true
minus(x1, x2)  =  minus
false  =  false
ge(x1, x2)  =  x2
div(x1, x2)  =  div(x1, x2)
div_active(x1, x2)  =  div_active(x1, x2)
if(x1, x2, x3)  =  if(x1, x2, x3)
if_active(x1, x2, x3)  =  if_active(x1, x2, x3)

Recursive path order with status [RPO].
Quasi-Precedence:
GEACTIVE2 > [minusactive, 0, true, minus, false]
[div2, divactive2] > [s1, if3, ifactive3] > [minusactive, 0, true, minus, false]

Status:
GEACTIVE2: multiset
s1: multiset
minusactive: multiset
0: multiset
true: multiset
minus: multiset
false: multiset
div2: [2,1]
divactive2: [2,1]
if3: [3,1,2]
ifactive3: [3,1,2]


The following usable rules [FROCOS05] were oriented:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS_ACTIVE(s(x), s(y)) → MINUS_ACTIVE(x, y)

The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS_ACTIVE(s(x), s(y)) → MINUS_ACTIVE(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MINUS_ACTIVE(x1, x2)  =  MINUS_ACTIVE(x1, x2)
s(x1)  =  s(x1)
minus_active(x1, x2)  =  minus_active
0  =  0
mark(x1)  =  x1
ge_active(x1, x2)  =  x2
true  =  true
minus(x1, x2)  =  minus
false  =  false
ge(x1, x2)  =  x2
div(x1, x2)  =  div(x1, x2)
div_active(x1, x2)  =  div_active(x1, x2)
if(x1, x2, x3)  =  if(x1, x2, x3)
if_active(x1, x2, x3)  =  if_active(x1, x2, x3)

Recursive path order with status [RPO].
Quasi-Precedence:
MINUSACTIVE2 > [minusactive, 0, true, minus, false]
[div2, divactive2] > [s1, if3, ifactive3] > [minusactive, 0, true, minus, false]

Status:
MINUSACTIVE2: multiset
s1: multiset
minusactive: multiset
0: multiset
true: multiset
minus: multiset
false: multiset
div2: [2,1]
divactive2: [2,1]
if3: [3,1,2]
ifactive3: [3,1,2]


The following usable rules [FROCOS05] were oriented:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(div(x, y)) → DIV_ACTIVE(mark(x), y)
DIV_ACTIVE(s(x), s(y)) → IF_ACTIVE(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
IF_ACTIVE(true, x, y) → MARK(x)
MARK(s(x)) → MARK(x)
MARK(div(x, y)) → MARK(x)
MARK(if(x, y, z)) → IF_ACTIVE(mark(x), y, z)
IF_ACTIVE(false, x, y) → MARK(y)
MARK(if(x, y, z)) → MARK(x)

The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(div(x, y)) → DIV_ACTIVE(mark(x), y)
DIV_ACTIVE(s(x), s(y)) → IF_ACTIVE(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
IF_ACTIVE(true, x, y) → MARK(x)
MARK(s(x)) → MARK(x)
MARK(div(x, y)) → MARK(x)
MARK(if(x, y, z)) → IF_ACTIVE(mark(x), y, z)
IF_ACTIVE(false, x, y) → MARK(y)
MARK(if(x, y, z)) → MARK(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
div(x1, x2)  =  div(x1)
DIV_ACTIVE(x1, x2)  =  DIV_ACTIVE(x1)
mark(x1)  =  x1
s(x1)  =  s(x1)
IF_ACTIVE(x1, x2, x3)  =  IF_ACTIVE(x1, x2, x3)
ge_active(x1, x2)  =  ge_active
minus(x1, x2)  =  minus(x1)
0  =  0
true  =  true
if(x1, x2, x3)  =  if(x1, x2, x3)
false  =  false
minus_active(x1, x2)  =  minus_active(x1)
ge(x1, x2)  =  ge
div_active(x1, x2)  =  div_active(x1)
if_active(x1, x2, x3)  =  if_active(x1, x2, x3)

Recursive path order with status [RPO].
Quasi-Precedence:
[div1, DIVACTIVE1, IFACTIVE3, if3, divactive1, ifactive3] > [s1, geactive, ge] > [MARK1, minus1, true, false, minusactive1]
[div1, DIVACTIVE1, IFACTIVE3, if3, divactive1, ifactive3] > 0 > [MARK1, minus1, true, false, minusactive1]

Status:
MARK1: [1]
div1: [1]
DIVACTIVE1: [1]
s1: multiset
IFACTIVE3: [1,3,2]
geactive: multiset
minus1: multiset
0: multiset
true: multiset
if3: [1,3,2]
false: multiset
minusactive1: multiset
ge: multiset
divactive1: [1]
ifactive3: [1,3,2]


The following usable rules [FROCOS05] were oriented:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE