(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

Q is empty.

(1) AAECC Innermost (EQUIVALENT transformation)

We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is

sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The TRS R 2 is

process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The signature Sigma is {process, if2, if3, if1}

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)
SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)
LEQ(s(n), s(m)) → LEQ(n, m)
LENGTH(cons(h, t)) → LENGTH(t)
APP(cons(h, t), x) → APP(t, x)
MAP_F(pid, cons(h, t)) → APP(f(pid, h), map_f(pid, t))
MAP_F(pid, cons(h, t)) → MAP_F(pid, t)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
PROCESS(store, m) → LEQ(m, length(store))
PROCESS(store, m) → LENGTH(store)
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, true) → EMPTY(fstsplit(m, store))
IF1(store, m, true) → FSTSPLIT(m, store)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
IF1(store, m, false) → EMPTY(fstsplit(m, app(map_f(self, nil), store)))
IF1(store, m, false) → FSTSPLIT(m, app(map_f(self, nil), store))
IF1(store, m, false) → APP(map_f(self, nil), store)
IF1(store, m, false) → MAP_F(self, nil)
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
IF2(store, m, false) → APP(map_f(self, nil), sndsplit(m, store))
IF2(store, m, false) → MAP_F(self, nil)
IF2(store, m, false) → SNDSPLIT(m, store)
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
IF3(store, m, false) → SNDSPLIT(m, app(map_f(self, nil), store))
IF3(store, m, false) → APP(map_f(self, nil), store)
IF3(store, m, false) → MAP_F(self, nil)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 15 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(cons(h, t), x) → APP(t, x)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(cons(h, t), x) → APP(t, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  x1
cons(x1, x2)  =  cons(x1, x2)
fstsplit(x1, x2)  =  x2
0  =  0
nil  =  nil
s(x1)  =  x1
sndsplit(x1, x2)  =  sndsplit(x1, x2)
empty(x1)  =  empty(x1)
true  =  true
false  =  false
leq(x1, x2)  =  leq
length(x1)  =  length
app(x1, x2)  =  app(x1, x2)
map_f(x1, x2)  =  map_f(x1, x2)
f(x1, x2)  =  f(x1, x2)
process(x1, x2)  =  process(x2)
if1(x1, x2, x3)  =  if1(x2)
if2(x1, x2, x3)  =  if2(x2)
if3(x1, x2, x3)  =  if3(x2)
self  =  self

Lexicographic path order with status [LPO].
Quasi-Precedence:
sndsplit2 > [nil, process1, if11, if21, if31]
empty1 > [false, leq, app2] > cons2 > [0, length] > [nil, process1, if11, if21, if31]
empty1 > [false, leq, app2] > true > [nil, process1, if11, if21, if31]
mapf2 > [false, leq, app2] > cons2 > [0, length] > [nil, process1, if11, if21, if31]
mapf2 > [false, leq, app2] > true > [nil, process1, if11, if21, if31]
mapf2 > f2 > [nil, process1, if11, if21, if31]
self > [nil, process1, if11, if21, if31]

Status:
empty1: [1]
f2: [2,1]
true: []
if31: [1]
if21: [1]
if11: [1]
length: []
0: []
mapf2: [1,2]
sndsplit2: [1,2]
cons2: [2,1]
self: []
false: []
app2: [2,1]
leq: []
nil: []
process1: [1]


The following usable rules [FROCOS05] were oriented:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MAP_F(pid, cons(h, t)) → MAP_F(pid, t)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MAP_F(pid, cons(h, t)) → MAP_F(pid, t)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MAP_F(x1, x2)  =  x2
cons(x1, x2)  =  cons(x1, x2)
fstsplit(x1, x2)  =  fstsplit(x2)
0  =  0
nil  =  nil
s(x1)  =  s
sndsplit(x1, x2)  =  sndsplit(x2)
empty(x1)  =  empty
true  =  true
false  =  false
leq(x1, x2)  =  leq
length(x1)  =  x1
app(x1, x2)  =  app(x1, x2)
map_f(x1, x2)  =  map_f(x1, x2)
f(x1, x2)  =  f(x1, x2)
process(x1, x2)  =  process
if1(x1, x2, x3)  =  x3
if2(x1, x2, x3)  =  if2
if3(x1, x2, x3)  =  x3
self  =  self

Lexicographic path order with status [LPO].
Quasi-Precedence:
fstsplit1 > cons2 > [0, s, empty, true, false, leq, process, if2]
fstsplit1 > nil > [0, s, empty, true, false, leq, process, if2]
sndsplit1 > nil > [0, s, empty, true, false, leq, process, if2]
mapf2 > nil > [0, s, empty, true, false, leq, process, if2]
mapf2 > app2 > cons2 > [0, s, empty, true, false, leq, process, if2]
mapf2 > f2 > [0, s, empty, true, false, leq, process, if2]
self > [0, s, empty, true, false, leq, process, if2]

Status:
f2: [2,1]
true: []
empty: []
s: []
fstsplit1: [1]
0: []
mapf2: [1,2]
process: []
cons2: [2,1]
self: []
sndsplit1: [1]
false: []
app2: [2,1]
if2: []
leq: []
nil: []


The following usable rules [FROCOS05] were oriented:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(h, t)) → LENGTH(t)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(cons(h, t)) → LENGTH(t)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  LENGTH(x1)
cons(x1, x2)  =  cons(x1, x2)
fstsplit(x1, x2)  =  fstsplit(x2)
0  =  0
nil  =  nil
s(x1)  =  x1
sndsplit(x1, x2)  =  sndsplit(x1, x2)
empty(x1)  =  empty(x1)
true  =  true
false  =  false
leq(x1, x2)  =  leq
length(x1)  =  length(x1)
app(x1, x2)  =  app(x1, x2)
map_f(x1, x2)  =  map_f(x1, x2)
f(x1, x2)  =  f
process(x1, x2)  =  x2
if1(x1, x2, x3)  =  x2
if2(x1, x2, x3)  =  x2
if3(x1, x2, x3)  =  x2
self  =  self

Lexicographic path order with status [LPO].
Quasi-Precedence:
[empty1, false, leq, mapf2] > fstsplit1 > cons2
[empty1, false, leq, mapf2] > fstsplit1 > nil
[empty1, false, leq, mapf2] > sndsplit2 > nil
[empty1, false, leq, mapf2] > true
[empty1, false, leq, mapf2] > app2 > cons2
[empty1, false, leq, mapf2] > f
[empty1, false, leq, mapf2] > self
length1 > 0 > nil
length1 > 0 > true

Status:
empty1: [1]
LENGTH1: [1]
f: []
true: []
fstsplit1: [1]
0: []
mapf2: [1,2]
sndsplit2: [1,2]
cons2: [2,1]
self: []
false: []
app2: [1,2]
length1: [1]
leq: []
nil: []


The following usable rules [FROCOS05] were oriented:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LEQ(s(n), s(m)) → LEQ(n, m)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LEQ(s(n), s(m)) → LEQ(n, m)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LEQ(x1, x2)  =  x1
s(x1)  =  s(x1)
fstsplit(x1, x2)  =  fstsplit(x1, x2)
0  =  0
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
sndsplit(x1, x2)  =  sndsplit(x1, x2)
empty(x1)  =  empty(x1)
true  =  true
false  =  false
leq(x1, x2)  =  leq
length(x1)  =  length(x1)
app(x1, x2)  =  app(x1, x2)
map_f(x1, x2)  =  map_f(x2)
f(x1, x2)  =  x2
process(x1, x2)  =  process(x2)
if1(x1, x2, x3)  =  if1(x2)
if2(x1, x2, x3)  =  if2(x2)
if3(x1, x2, x3)  =  if3(x2)
self  =  self

Lexicographic path order with status [LPO].
Quasi-Precedence:
fstsplit2 > cons2 > s1 > nil > 0
empty1 > true > [sndsplit2, process1, if11, if21, if31, self] > nil > 0
empty1 > false > [sndsplit2, process1, if11, if21, if31, self] > nil > 0
empty1 > false > [app2, mapf1] > cons2 > s1 > nil > 0
leq > true > [sndsplit2, process1, if11, if21, if31, self] > nil > 0
leq > false > [sndsplit2, process1, if11, if21, if31, self] > nil > 0
leq > false > [app2, mapf1] > cons2 > s1 > nil > 0
length1 > s1 > nil > 0

Status:
empty1: [1]
true: []
if31: [1]
if21: [1]
if11: [1]
0: []
sndsplit2: [2,1]
cons2: [2,1]
self: []
false: []
s1: [1]
fstsplit2: [1,2]
app2: [1,2]
length1: [1]
leq: []
mapf1: [1]
nil: []
process1: [1]


The following usable rules [FROCOS05] were oriented:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

(24) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.

(25) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(26) TRUE

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SNDSPLIT(x1, x2)  =  SNDSPLIT(x2)
s(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
fstsplit(x1, x2)  =  fstsplit(x1, x2)
0  =  0
nil  =  nil
sndsplit(x1, x2)  =  sndsplit(x1, x2)
empty(x1)  =  empty(x1)
true  =  true
false  =  false
leq(x1, x2)  =  leq
length(x1)  =  length(x1)
app(x1, x2)  =  app(x1, x2)
map_f(x1, x2)  =  map_f(x1, x2)
f(x1, x2)  =  x2
process(x1, x2)  =  process
if1(x1, x2, x3)  =  x3
if2(x1, x2, x3)  =  if2
if3(x1, x2, x3)  =  if3
self  =  self

Lexicographic path order with status [LPO].
Quasi-Precedence:
[fstsplit2, empty1, true, false, leq, process, if2, if3, self] > nil > 0
[fstsplit2, empty1, true, false, leq, process, if2, if3, self] > sndsplit2
[fstsplit2, empty1, true, false, leq, process, if2, if3, self] > length1
[fstsplit2, empty1, true, false, leq, process, if2, if3, self] > mapf2 > app2 > cons2

Status:
empty1: [1]
if3: []
true: []
0: []
mapf2: [1,2]
sndsplit2: [1,2]
process: []
cons2: [2,1]
self: []
false: []
fstsplit2: [2,1]
app2: [1,2]
SNDSPLIT1: [1]
if2: []
length1: [1]
leq: []
nil: []


The following usable rules [FROCOS05] were oriented:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

(29) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.

(30) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(31) TRUE

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FSTSPLIT(x1, x2)  =  x2
s(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
fstsplit(x1, x2)  =  x2
0  =  0
nil  =  nil
sndsplit(x1, x2)  =  sndsplit(x1, x2)
empty(x1)  =  empty
true  =  true
false  =  false
leq(x1, x2)  =  leq
length(x1)  =  length
app(x1, x2)  =  app(x1, x2)
map_f(x1, x2)  =  map_f(x1, x2)
f(x1, x2)  =  x1
process(x1, x2)  =  process
if1(x1, x2, x3)  =  x3
if2(x1, x2, x3)  =  x3
if3(x1, x2, x3)  =  if3
self  =  self

Lexicographic path order with status [LPO].
Quasi-Precedence:
length > [0, nil, sndsplit2, empty, true, false, leq, process, if3]
mapf2 > app2 > cons2 > [0, nil, sndsplit2, empty, true, false, leq, process, if3]
self > [0, nil, sndsplit2, empty, true, false, leq, process, if3]

Status:
if3: []
true: []
empty: []
length: []
0: []
mapf2: [2,1]
process: []
sndsplit2: [1,2]
cons2: [2,1]
self: []
false: []
app2: [2,1]
leq: []
nil: []


The following usable rules [FROCOS05] were oriented:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

(34) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.

(35) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(36) TRUE

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.